

Bureau Veritas Consumer Products Services Germany GmbH

Businesspark A96 86842 Türkheim Deutschland + 49 (0) 4074041-0 cps-tuerkheim@de.bureauveritas.com

Zertifizierungsstelle der BV CPS GmbH Akkreditiert nach EN 45011 -ISO / IEC Guide 65

Einheitenzertifikat

Hersteller:

Kostal Solar Electric GmbH

Hanferstraße 6 79108 Freiburg Deutschland

Typ Erzeugungseinheit:	Solar Inverter	PIKO 7.0 DCS PIKO 7.0 AD				
Technische Daten:	Nennscheinleistung:	7,0 kVA	8,3 kVA	10,0 kVA		
	Nennwirkleistung:		siehe Nennscheinleistung			
	Wirkleistung: $(\cos \phi = 0.95; U = 0.95 U_n)$	6,7 kW	7,9 kW	9,5 kW		
	Nennspannung:	230/400 V, 3/N/PE				
	Nennfrequenz:	50 Hz				

Firmwareversion:

04.00

PIKO 7.0 DCS/AD

(weitere Versionen siehe Beiblatt)

03.90

1 INO 7.0 DOO/AD

PIKO 8.3 DCS/AD, PIKO 10.1 DCS/AD/basic

Netzanschlussregel:

BDEW-Richtlinie "Erzeugungsanlagen am Mittelspannungsnetz"

Richtlinie für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Mittelspannungsnetz, 2008

und Ergänzung bis einschließlich 1/2013

Mitgeltende Normen /

DIN EN 61400-21:2008

Richtlinien:

Technische Richtlinien: TR3 Rev. 21, TR4 Rev. 5, TR8 Rev. 4

TransmissionCode 2007

Die oben bezeichnete Erzeugungseinheit wurde nach den, in der Netzanschlussregel referenzierten, technischen Richtlinien geprüft und zertifiziert. Die in der Netzanschlussregel geforderten elektrischen Eigenschaften werden erfüllt:

- Erzeugung und Regelung von Wirk- und Blindleistung
- Verhalten der Erzeugungseinheit bei Netzstörungen (Blindstromcharakteristik gemäß TransmissionCode 2007)
- Schutzeinrichtung auf Einheitenebene (Hinweis im Anhang)
- Ausweis der Netzrückwirkungen
- Validiertes Einheitenmodell: Kost_12_072_TR4_Pikoxxx_V1_open, Kost_12_072_TR4_Pikoxxx_V1

Der Hersteller hat die Zertifizierung seines Qualitätsmanagementsystems nach ISO 9001 nachgewiesen.

Das Zertifikat beinhaltet folgende Angaben:

- Technische Daten der Erzeugungseinheit, der eingesetzten Hilfseinrichtungen und der verwendeten Softwareversion
- Den schematischen Aufbau der Erzeugungseinheit
- Zusammengefasste Angaben zu den Eigenschaften der Erzeugungseinheit

BV Projektnummer:

07THS186

Zertifikatsnummer:

12-072 2

Ausstellungsdatum:

2013-05-03

Gültig bis:

2017-04-24

Zertifizierungsstelle

Dieter Zitzmann

(Eine auszugsweise Darstellung des Zertifikats bedarf der schriftlichen Genehmigung der BV CPS GmbH)

DAKKS

Deutsche
Akkreditierungsstelle
D-ZE-12024-01-01

(S. 1 von 39)

Bureau Veritas Consumer Products Services Germany GmbH

Businesspark A96 86842 Türkheim Deutschland + 49 (0) 4074041-0 cps-tuerkheim@de.bureauveritas.com

Zertifizierungsstelle der BV CPS GmbH Akkreditiert nach EN 45011 -ISO / IEC 17011

Zertifikatsbeiblatt (12-072_2)

Zusätzlich zugelassene Firmwareversionen:						
PIKO 7.0 DCS PIKO 7.0 AD	PIKO 8.3 DCS PIKO 8.3 AD	PIKO 10.1 DCS PIKO 10.1 AD PIKO 10.1 basic				
04.01	04.00	04.00				
04.02	04.01	04.01				
04.03	04.02	04.02				
-	04.03	04.03				

Ausstellungsdatum:

2013-05-03

Zertifizierungsstelle

Dieter Zitzmann

(Eine auszugsweise Darstellung des Zertifikats bedarf der schriftlichen Genehmigung der BV CPS GmbH)

(S. 2 von 39)

Seite 3 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Beschreib	ung der Revisionierung des Zertifikates 12-072
Rev. 0	Erstausstellung
	Allgemeine Änderungen:
	Erweiterung der Beschreibung der Eigenschaften auf dem Deckblatt
	Erweiterung der Firmwareversion auf dem Deckblatt
	Formale Änderungen
Rev. 1	Änderungen im Auszug aus dem Prüfbericht:
	 4.3.1 : Erweiterung um die "Beschreibung der Blindleistungsbereitstellung im Spannungsband"
	4.5 : Ergänzung des vermessenen Abschaltzeitbereichs
	 4.7: Erweiterung der Beschreibung, Entfernung der maximalen Kurzschlussstrombeiträge über alle Tests
	Allgemeine Änderungen:
	Änderung der Beschreibung der Eigenschaften auf dem Deckblatt
	Formale Änderungen und Erweiterung der Firmwareversion auf dem Deckblatt
	Änderungen der Beschreibung / technischen Daten der Erzeugungseinheit:
Rev. 2	Anpassung der Beschreibung der Netzüberwachung
1101. 2	Erweiterung der genutzten Trenneinheit
	Änderungen im Auszug aus dem Prüfbericht:
	 4.3.1 : Aktualisierung und Erweiterung der "Beschreibung der Blindleistungsbereitstellung im Spannungsband"
	 4.4.1/2/3 : Ergänzung der Übertragbarkeit auf den PIKO 7.0

Seite 4 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Beschreibung der Erzeugungseinheit

Beschreibung des Aufbaus der Erzeugungseinheit (Abbildung 1):

Die Erzeugungseinheit verfügt über einen netzseitigen EMV-Filter. Die Erzeugungseinheit besitzt keine galvanische Trennung zwischen DC-Eingang und AC-Ausgang. Der Ausgang wird einfehlersicher durch die Wechselrichterbrücke und zwei Relais in Reihe abgeschaltet. Dies erlaubt eine sichere Trennung der Erzeugungseinheit vom Netz auch im Fehlerfall.

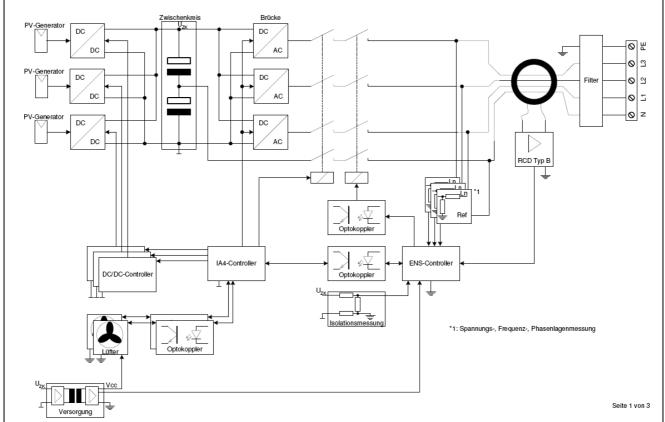


Abbildung 1 - Schematischer Aufbau der Erzeugungseinheit

Unterschiede zwischen den aufgeführten Erzeugungseinheiten:

Die "AD"-Varianten sind im Gegensatz zu den "DCS"-Varianten um eine Schutzbeschaltung auf der PV-Seite ergänzt.

Der Inverter PIKO 8.3 und PIKO 7.0 sind durch Software leistungsreduzierte Versionen des Inverters PIKO 10.1. Der PIKO 8.3, PIKO 7.0 und PIKO 10.1 basic verfügen über zwei Stringeingänge mitsamt zwei MPPTs, am PIKO 10.1 DCS|AD sind drei Strings anschließbar und dementsprechend drei MPP-Tracker integriert.

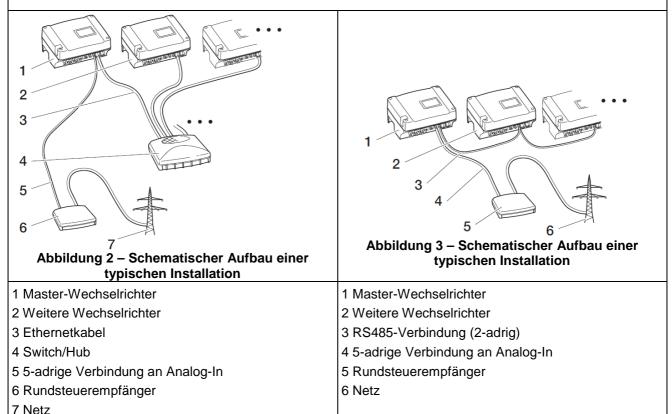
Der implementierte Regler und die Firmware sind in allen Einheiten identisch.

Begründeter Umfang der durchgeführten Messungen und Validierungen:

Die Vermessung erfolgte an den "DCS"-Typen, die Validierung und Zertifizierung ist valide für alle entsprechenden Subtypen.

Die Einheit PIKO 10.1 DCS wurde nach der gesamten TR3 charakterisiert, das Simulationsmodell nach der TR4/TR8 validiert und nach der TR8 bewertet.

Die Tests 4.2.2, 4.2.3, 4.3.1, 4.3.2, 4.3.3, 4.4.1, 4.4.2 und 4.4.3 nach TR3 wurden an der Einheit PIKO 8.3 DCS durchgeführt. Die übrigen Charakteristika, sowie der PIKO 7.0, werden durch die Vermessung der Erzeugungseinheit PIKO 10.1 abgedeckt. Die zugehörigen Simulationsmodelle wurden zusätzlichen Plausibilitätsbetrachtungen unterzogen.



Seite 5 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Beschreibung der Revisionierung des Zertifikates 12-072

Beschreibung einer typischen Installation (Herstellerangaben):

Die Wechselrichter müssen entweder über Ethernet (Abbildung 2) oder RS485 (Abbildung 3) vernetzt sein, damit der mit dem Rundsteuerempfänger verbundene Wechselrichter die erhaltenen Informationen an die übrigen Wechselrichter weiterleiten kann.

Beschreibung der Verbindung mit einem Rundsteuerempfänger (Abbildung 4) (Herstellerangaben):

Die Anschlüsse des Rundsteuerempfängers werden an den Eingängen für analoge Sensoren (0...10V) des Inverters angeschlossen.

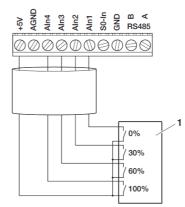


Abbildung 4 - Schematischer Aufbau der Anbindung eines Rundsteuerempfängers

Beschreibung der einstellbaren Blindleistungscharakteristik (Herstellerangaben):

Die Blindleistungsregelung auf unterster Reglerebene erfolgt auf Basis cosφ.

Die Einheiten PIKO 10.1, PIKO 8.3 und PIKO 7.0 besitzen folgende Einstellmöglichkeiten zur Vorgabe einer Blindleistungscharakteristik:

- Starre Vorgabe eines cosφ-Sollwertes (Bereich: +/- 0,9; Stufung: 0,01%)
- Einstellbare cosφ(P)-Kennlinie (Zahl der Stützpunkte: 4)

Seite 6 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Beschreibung der Revisionierung des Zertifikates 12-072

Beschreibung der Einstellbereiche des Netzschutzes (Herstellerangaben):

Die Bereiche der Frequenzüberwachung sind:

Unterfrequenzbereich: 47,5...50,0 Hz Abschaltzeitbereich: 100...2500 ms
 Überfrequenzbereich: 50,0...52,0 Hz Abschaltzeitbereich: 100...2500 ms

Die Bereiche der Spannungsüberwachung sind:

Unterspannungsbereich (1. Stufe): $0,1...1,0 U_n$ Abschaltzeitbereich: 100...2500 ms* Unterspannungsbereich (2. Stufe): $0.1...1.0 U_{n}$ Abschaltzeitbereich: 100...2500 ms* Überspannungsbereich (1. Stufe): 1,0...1,3 U_n** Abschaltzeitbereich: 100...2500 ms Abschaltzeitbereich: Überspannungsbereich (2. Stufe): $1,0...1,3 U_n^{**}$ 100...2500 ms

- $45\%U_n = 104 \text{ V} > U >= 30\%U_n = 70 \text{ V}$ bis 770 ms
- $30\%U_n = 70 \text{ V} > U >= 20\%U_n = 46 \text{ V} \text{ bis } 570 \text{ ms}$
- $20\%U_n = 46 \text{ V} > U >= 0\%U_n = 0 \text{ V}$ bis 300 ms

Die beschriebenen Parameterbereiche erlauben einen kontinuierlichen Betrieb der Erzeugungseinheit (siehe Hinweise unter * / **).

Die Funktionen der integrierten Netzüberwachung wird nicht durch andere Parameter und Funktionen, die in diesem Auszug aus dem Prüfbericht aufgeführt sind, beeinflusst.

Die Funktion der integrierten Netzüberwachung kann bei Spannungseinbrüchen für 3 s, der Dauer eines Netzfehlers, aufrechterhalten werden.

Fällt die Versorgung der integrierten Netzüberwachung aus, so führt dies zu einer unverzögerten Trennung vom Netz.

Die integrierte Netzüberwachung ist einfehlersicher implementiert (nachgewiesen durch eine Bescheinigung entsprechend DIN V VDE V 0126-1-1:2006-02). Ferner ist der Mikrocontroller konform zu UL1998 – SW-Class B / EN 60730-1 Annex H SW-Class 1.

Die Einstellwerte der Entkupplungsschutzfunktionen sind mittels der PARAKO Software parametrierbar.

Eine Prüfklemmleiste ist nicht vorhanden. Falls diese erforderlich ist, ist eine externe Überwachungseinheit als zwischengelagerter Schutz zu installieren.

^{*} Die Dauer der möglichen Abschaltzeit verringert sich, abhängig von der Netzspannung, folgendermaßen:

^{**} Kontinuierlicher Betrieb bis 1,23 Un, Parameter bis 1,3 Un einstellbar

Seite 7 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Tec	chnis	che Daten der Erzeugungseinhei	t (Herstellerangaben)		
1		Allgemeines und Ausgangsgrö	ßen		General and Output values
	1	Hersteller	KOSTAL Industrie Elektrik GmbH		manufacturer
	2	Typenbezeichnung	PIKO 10.1 DCS PIKO 10.1 AD PIKO 10.1 basic		type name
	3	Einspeisung (einphasig/dreiphasig)	dreiphasig		no. of phases (single-phase/three-phase)
	4	Nennscheinleistung	10000	VA	rated apparent power
	5	Nennwirkleistung	10000	W	rated active power
	6	AC-Nennspannung	3/N/PE 230 / 400	V	rated AC-voltage
	7	AC-Nennfrequenz	50	Hz	rated frequency
	8	Beitrag zum Stoßkurzschlussstrom	14,5	Α	contribution to initial short circuit current
2		DC Eingangsgrößen			DC Input
	1	Min. MPP-Spannung	420	V	min. MPP voltage
	2	Max. MPP-Spannung	850	V	max. MPP voltage
	3	Max. PV-Eingangsspannung	950	V	max. DC input voltage
	4	Max. PV-Eingangsstrom	12,5/25	Α	max. DC input current
	5	Max. Modulleistung	11000	Wp	max. peak power
3		Wechselrichter-Leistungsteil			Converter-Power section
	1	Nennscheinleistung	10000	VA	rated apparent power
	2	Art (HF/NF-Trafo, trafolos)	trafolos		generic type (HF/LF-transformer, without)
	3	Taktfrequenz	16	kHz	pulse rate of inverter
	4	Art der Leistungsregelung (MPPT)	3 * unabhängige MPPT		generic type of power control (MPPT)
4		Sonstige elektrische Komponer	nten		Other electric components
	1	Art der Netzkopplung	Netzparallelbetrieb		generic type of interconnection
	2	Netzschutz integriert (Ja/Nein)	Ja		integrated grid protection (Yes/No)
	3	- Typenbezeichnung	-		- type
	4	Typenbezeichnung der Trenneinheit	Tyco Electronics PCFN-112H2MG oder Panasonic		circuit breaker type
	5	Oberschwingungsfilter (Ja/Nein)	ALFG1PF121 Nein		harmonic filter (Yes/No)

Seite 8 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Tec	hnis	che Daten der Erzeugungseinhei	t (Herstellerangaben)		
1		Allgemeines und Ausgangsgröß	ßen		General and Output values
	1	Hersteller	KOSTAL Industrie Elektrik GmbH		manufacturer
	2	Typenbezeichnung	PIKO 8.3 DCS PIKO 8.3 AD		type name
	3	Einspeisung (einphasig/dreiphasig)	dreiphasig		no. of phases (single-phase/three-phase)
	4	Nennscheinleistung	8300	VA	rated apparent power
	5	Nennwirkleistung	8300	W	rated active power
	6	AC-Nennspannung	3/N/PE 230 / 400	V	rated AC-voltage
	7	AC-Nennfrequenz	50	Hz	rated frequency
	8	Beitrag zum Stoßkurzschlussstrom	12	Α	contribution to initial short circuit current
2		DC Eingangsgrößen			DC Input
	1	Min. MPP-Spannung	400	V	min. MPP voltage
	2	Max. MPP-Spannung	850	V	max. MPP voltage
	3	Max. PV-Eingangsspannung	950	V	max. DC input voltage
	4	Max. PV-Eingangsstrom	12,5/25	Α	max. DC input current
	5	Max. Modulleistung	9130	Wp	max. peak power
3		Wechselrichter-Leistungsteil			Converter-Power section
	1	Nennscheinleistung	8300	VA	rated apparent power
	2	Art (HF/NF-Trafo, trafolos)	trafolos		generic type (HF/LF-transformer, without)
	3	Taktfrequenz	16	kHz	pulse rate of inverter
	4	Art der Leistungsregelung (MPPT)	2*unabhängige MPPT		generic type of power control (MPPT)
4		Sonstige elektrische Komponer	nten		Other electric components
	1	Art der Netzkopplung	Netzparallelbetrieb		generic type of interconnection
	2	Netzschutz integriert (Ja/Nein)	Ja		integrated grid protection (Yes/No)
	3	- Typenbezeichnung	-		- type
	4	Typenbezeichnung der Trenneinheit	Tyco Electronics PCFN-112H2MG oder Panasonic ALFG1PF121		circuit breaker type
	5	Oberschwingungsfilter (Ja/Nein)	Nein		harmonic filter (Yes/No)

Seite 9 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Tec	hnis	che Daten der Erzeugungseinhei	t (Herstellerangaben)		
1		Allgemeines und Ausgangsgröß	ßen		General and Output values
	1	Hersteller	KOSTAL Industrie Elektrik GmbH		manufacturer
	2	Typenbezeichnung	PIKO 7.0 DCS PIKO 7.0 AD		type name
	3	Einspeisung (einphasig/dreiphasig)	dreiphasig		no. of phases (single-phase/three-phase)
	4	Nennscheinleistung	7000	VA	rated apparent power
	5	Nennwirkleistung	7000	W	rated active power
	6	AC-Nennspannung	3/N/PE 230 / 400	V	rated AC-voltage
	7	AC-Nennfrequenz	50	Hz	rated frequency
	8	Beitrag zum Stoßkurzschlussstrom	12,3	Α	contribution to initial short circuit current
2		DC Eingangsgrößen			DC Input
	1	Min. MPP-Spannung	400	V	min. MPP voltage
	2	Max. MPP-Spannung	850	V	max. MPP voltage
	3	Max. PV-Eingangsspannung	950	V	max. DC input voltage
	4	Max. PV-Eingangsstrom	12,5 / 25	Α	max. DC input current
	5	Max. Modulleistung	7700	Wp	max. peak power
3		Wechselrichter-Leistungsteil			Converter-Power section
	1	Nennscheinleistung	7000	VA	rated apparent power
	2	Art (HF/NF-Trafo, trafolos)	trafolos		generic type (HF/LF-transformer, without)
	3	Taktfrequenz	16	kHz	pulse rate of inverter
	4	Art der Leistungsregelung (MPPT)	2* unabhängige MPPT		generic type of power control (MPPT)
4		Sonstige elektrische Komponer	nten		Other electric components
	1	Art der Netzkopplung	Netzparallelbetrieb		generic type of interconnection
	2	Netzschutz integriert (Ja/Nein)	Ja		integrated grid protection (Yes/No)
	3	- Typenbezeichnung	-		- type
	4	Typenbezeichnung der Trenneinheit	Tyco Electronics PCFN-112H2MG oder Panasonic ALFG1PF121		circuit breaker type
	5	Oberschwingungsfilter (Ja/Nein)	Nein		harmonic filter (Yes/No)

Seite 10 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)								
TR 3 – 4.2.1 Wirkleistung								
PIKO 10.1 DCS								
$P_{600} = P_{10min} [kW]$	$P_{600} = P_{10min} [kW]$ 10,11 $P_{60} = P_{1min} [kW]$ 10,13 $P_{0,2} = P_m [kW]$ 11,16							
p ₆₀₀ =P ₆₀₀ /P _{nG}	$p_{600} = P_{600}/P_{nG}$ 1,01 $p_{60} = P_{60}/P_{nG}$ 1,01 $p_{0,2} = P_{0,2}/P_{nG}$ 1,12							

Anmerkung:

Bei $\cos \varphi = 1$ entspricht die Wirkleistung der Nennscheinleistung.

Für die Umsetzung einer Blindleistungssollwertvorgabe wird bei Bedarf die Wirkleistung reduziert.

Die Qualität der Wirkleistungscharakteristik ist identisch bei den Wechselrichtern PIKO 8.3 DCS und PIKO 7.0 DCS.

Verhalten der Wirkleistungserzeugung bei Variation von Spannung und Frequenz des Netzes

Die Erzeugungseinheit regelt auf ihren Bemessungsstrom und arbeitet im spezifizierten Spannungs- und Frequenzbereich der Netzanschlussregel. Bei Bedarf wird bei Fluktuation der Netzparameter im Nennbetrieb die Leistung reduziert. Nach Spannungslosigkeit erfolgt ein Wirkleistungsanstieg mit 9,3 %P_n/min.

Die Qualität der Wirkleistungscharakteristik ist identisch bei den Wechselrichtern PIKO 8.3 DCS und PIKO 7.0 DCS.

TR 3 – 4.2.2. Leistungsbegrenzung durch Sollwertvorgabe

	PIKC	10.1 DCS	
Maria da Maria da	Mind de interne	Überschreitung [kW]	+0,13
Maximale Abweichung der Wirkleistung		Unterschreitung [kW]	- 0,04
Sollwert [%]	P _{soll} [kW]	P ₆₀ [kW]	Abweichung ΔP/P _n [kW]
100%	10,00	10,11	+ 0,11
90%	9,00	9,08	+0,08
80%	8,00	8,13	+0,13
70%	7,00	7,13	+0,13
60%	6,00	6,07	+0,07
50%	5,00	5,05	+0,05
40%	4,00	4,02	+0,02
30%	3,00	3,00	0,00
20%	2,00	1,96	- 0,04
10%	1,00	0,99	- 0,01
4%	0,40	0,36	- 0,04
Einstellzeit der Leistung für einen Sollwertsprung		100% auf 30% [s]	13,0

Sollwert fsoll [Hz]

50 ±0,01

50 + 0,20...0,30

50 + 0,60...0,80

50 + 1,10...1,20

50 + 0.06...008

50 ±0,01

Seite 11 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

	PIKC) 8.3 DCS	1		
laximale Abweichung der W	irkleietuna	Überschreitung [kV	V]	+ 0,08	
daximale Abwelchung der W	irkieisturig	Unterschreitung [kV	V]	- 0,08	
Sollwert [%]	P _{soll} [kW]	P ₆₀ [kW]	Abwe	eichung ΔP/P _n [kW	
100%	8,30	8,33		+0,03	
90%	7,47	7,53		+0,06	
80%	6,64	6,72		+ 0,08	
70%	5,81	5,87		+ 0,06	
60%	4,98	4,97		- 0,01	
50%	4,15	4,12		- 0,03	
40%	3,32	3,32		0,00	
30%	2,49	2,44		- 0,05	
20%	1,66	1,64		-0,02	
10%	0,83	0,75		- 0,08	
4%	0,33	0,27		- 0,06	
nstellzeit der Leistung für e	inen Sollwertsprung	100% auf 30% [s]		14,4	
nmerkung: ie Qualität der Wirkleistungs R 3 – 4.2.3 Leistungsbegre			ter PIKO 7.0	DCS.	
	PIKO	10.1 DCS			
	10/D 7-4				
radient bei Wirkleistung >80	J%P _n zum Zeitpunkt der	Frequenzuberhohung		1	
radient bei Wirkleistung >80 Sollwert f _{soll} [Hz]	Istfrequenz f ₆₀		P ₆₀ [kW]	Mittlerer Gradier [%/Hz]	
-	Istfrequenz f ₆₀ 50,00	[Hz] P _{soll} [kW] 10,09	P ₆₀ [kW]		
Sollwert f _{soll} [Hz] 50 ±0,01	1stfrequenz f ₆₀ 50,00 50,20	[Hz] P _{soll} [kW] 10,09 10,09	10,09 10,09	[%/Hz]	
Sollwert f _{soll} [Hz]	Istfrequenz f ₆₀ 50,00	[Hz] P _{soll} [kW] 10,09	10,09		
Sollwert f _{soll} [Hz] 50 ±0,01	1stfrequenz f ₆₀ 50,00 50,20	[Hz] P _{soll} [kW] 10,09 10,09	10,09 10,09	[%/Hz]	
Sollwert f_{soll} [Hz] 50 ± 0.01 50 + 0.200.30 50 + 0.600.80 50 + 1.101.20	1stfrequenz f ₆₀ 50,00 50,20 50,30	[Hz] P _{soll} [kW] 10,09 10,09 9,69	10,09 10,09 9,73	[%/Hz] -35,7	
50 ±0,01 50 + 0,200,30 50 + 0,600,80	1stfrequenz f ₆₀ 50,00 50,20 50,30 50,70	[Hz] P _{soll} [kW] 10,09 10,09 9,69 8,07	10,09 10,09 9,73 8,09	-35,7 -39,6	

Istfrequenz f₆₀ [Hz]

50,00

50,20

50,30

50,70

51,20

50,06

50,00

 P_{soll} [kW]

6,01

6,01

5,77

4,81

3,61

3,61

6,01

 P_{60} [kW]

6,01

6,00

5,77

4,75

3,55

3,55

6,05

Mittlerer Gradient

[%/Hz]

- 38,3

-41,6

-40,8

Seite 12 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

PIKO 8.3 DCS							
Gradient bei Wirkleistung >80%P _n zum Zeitpunkt der Frequenzüberhöhung							
50 ±0,01 50,00 8,33 8,33							
50 : 0 20 0 20	50,20	8,33	8,33				
50 + 0,200,30	50,30	8,00	8,02	- 37,2			
50 + 0,600,80	50,70	6,66	6,65	- 40,3			
50 + 1,101,20	51,20	5,00	4,93	- 40,8			
50 + 0,060,08	50,06	5,00	4,92				
50 ±0,01	50,00	8,33	8,35				
Gradient bei Wirkleistung 4060%	P _n zum Zeitpunkt der Fre	quenzüberhöhung]				
50 ±0,01	50,00	5,00	5,00				
50 . 0.00 . 0.00	50,20	5,00	4,99				
50 + 0,200,30	50,30	4,80	4,76	- 46,0			
50 + 0,600,80	50,70	4,00	3,94	- 42,0			
50 + 1,101,20	51,20	3,00	2,95	- 40,8			
50 + 0,060,08	50,06	3,00	2,93				
50 ±0,01	50,00	5,00	5,00				

Anmerkung:

Die Qualität der Wirkleistungscharakteristik ist identisch bei dem Wechselrichter PIKO 7.0 DCS.

Seite 13 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

TR 3 – 4.3.1 P(Q) Charakteristik (maximales Q mit Vorgabetyp: cosφ)

PIKO 10.1 DCS

		ļ	PIKO 10.1 DCS			
Verfügbare Wirkleistung P/P _n [%]	P _{60,ind} [kW]	P _{60,cap} [kW]	Q _{60,ind} [kVAr]	Q _{60,cap} [kVAr]	$cos\phi_{60,ind}$	cosφ _{60,cap}
	0,34	0,34	-0,04	-0,78	0,991	0,403
4	0,34	0,34	-0,05	-0,78	0,991	0,404
	0,34	0,34	-0,05	-0,78	0,990	0,404
	0,96	0,97	0,38	-0,92	0,807	0,581
10	0,95	0,95	0,40	-0,92	0,793	0,574
	0,94	0,95	0,40	-0,92	0,792	0,575
	2,00	1,98	0,93	-1,25	0,907	0,907
20	2,00	2,00	0,93	-1,26	0,907	0,907
	2,00	2,01	0,93	-1,26	0,907	0,907
	2,98	2,99	1,44	-1,65	0,900	0,875
30	2,98	2,99	1,44	-1,65	0,900	0,875
	2,98	2,99	1,44	-1,65	0,900	0,876
	4,19	4,03	2,09	-2,08	0,874	0,889
40	4,18	4,04	2,10	-2,08	0,873	0,889
	4,17	4,03	2,09	-2,08	0,873	0,889
	5,01	5,05	2,55	-2,49	0,892	0,897
50	5,01	5,04	2,54	-2,49	0,892	0,897
	5,01	5,04	2,54	-2,49	0,892	0,897
	5,97	5,97	3,07	-2,87	0,889	0,901
60	5,97	5,97	3,07	-2,87	0,889	0,901
	5,97	5,98	3,07	-2,87	0,889	0,901
	7,00	7,00	3,63	-3,29	0,888	0,905
70	7,00	7,00	3,63	-3,30	0,888	0,905
	7,00	7,02	3,63	-3,30	0,888	0,905
	7,99	7,99	4,15	-3,69	0,887	0,908
80	7,99	7,99	4,16	-3,70	0,887	0,907
	7,99	7,99	4,15	-3,70	0,887	0,907
	9,02	9,03	4,72	-4,10	0,886	0,910
90	9,02	9,03	4,72	-4,10	0,886	0,910
	9,02	9,03	4,72	-4,10	0,886	0,911
	9,80	9,81	5,15	-4,40	0,885	0,912
100	9,80	9,81	5,15	-4,40	0,885	0,912
	9,80	9,81	5,14	-4,41	0,886	0,912

Anmerkung:

Wird bei der Blindleistungsbereitstellung die Bemessungsleistung überschritten, so wird zugunsten der Blindleistungserzeugung die Wirkleistung reduziert (siehe auch nachfolgende Erläuterung).

Seite 14 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)							
PIKO 8.3 DCS							
Verfügbare Wirkleistung P/P _n [%]	P _{60,ind} [kW]	P _{60,cap} [kW]	Q _{60,ind} [kVAr]	Q _{60,cap} [kVAr]	cosφ _{60,ind}	cosφ _{60,cap}	
	0,27	0,27	-0,12	-0,62	0,918	0,400	
4	0,27	0,27	-0,12	-0,62	0,919	0,399	
	0,27	0,27	-0,12	-0,62	0,919	0,401	
	0,75	0,75	0,21	-0,72	0,903	0,613	
10	0,74	0,76	0,23	-0,72	0,893	0,618	
	0,75	0,75	0,25	-0,73	0,879	0,611	
	1,64	1,65	0,69	-1,00	0,913	0,913	
20	1,64	1,64	0,69	-1,01	0,913	0,913	
	1,64	1,65	0,69	-1,01	0,913	0,913	
-	2,48	2,48	1,11	-1,33	0,913	0,882	
30	2,47	2,48	1,10	-1,33	0,913	0,882	
	2,46	2,48	1,10	-1,32	0,913	0,882	
	3,32	3,33	1,55	-1,67	0,906	0,894	
40	3,32	3,33	1,55	-1,67	0,906	0,894	
	3,32	3,33	1,55	-1,67	0,906	0,894	
	4,12	4,11	1,98	-1,99	0,902	0,900	
50	4,12	4,11	1,98	-1,99	0,901	0,900	
	4,11	4,12	1,98	-2,00	0,901	0,900	
	4,99	5,03	2,45	-2,37	0,898	0,905	
60	4,98	5,02	2,44	-2,36	0,898	0,905	
	4,98	5,00	2,44	-2,36	0,898	0,905	
	5,80	5,89	2,89	-2,73	0,895	0,908	
70	5,80	5,88	2,89	-2,72	0,895	0,908	
	5,80	5,89	2,89	-2,72	0,895	0,908	
	6,70	6,71	3,38	-3,06	0,893	0,910	
80	6,70	6,71	3,38	-3,06	0,893	0,910	
	6,70	6,71	3,38	-3,06	0,893	0,910	
	7,54	7,55	3,83	-3,40	0,891	0,912	
90	7,54	7,55	3,83	-3,40	0,891	0,912	
	7,54	7,55	3,83	-3,40	0,891	0,912	
	8,30	8,36	4,25	-3,72	0,890	0,913	
100	8,30	8,33	4,24	-3,71	0,890	0,913	
-	8,30	8,33	4,25	-3,71	0,890	0,913	

Anmerkung:

Wird bei der Blindleistungsbereitstellung die Bemessungsleistung überschritten, so wird zugunsten der Blindleistungserzeugung die Wirkleistung reduziert (siehe auch nachfolgende Erläuterung). Die Qualität der Blindleistungscharakteristik ist identisch bei dem Wechselrichter PIKO 7.0 DCS.

Seite 15 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

Beschreibung der Blindleistungsbereitstellung im Spannungsband (Herstellerangabe)

In den Erzeugungseinheiten ist eine Limitierung im Spannungsband durch die maximale Scheinleistung und maximale Wirkleistung gegeben (diese Werte entsprechen den Nennwerten).

Die Blindleistungsbereitstellung wird gegenüber der Wirkleistung priorisiert.

Eine maximale Blindleistungsbereitstellung entsprechend einem $\cos \varphi = 0.9$ ist möglich.

Die Leistungsregelung erfolgt auf Basis folgender limitierender Werte:

	_	_	_								
Erzeugungsein	heit		Wirk- / Scheinleistungsbegrenzung [kW/kVA]								
PIKO 10.1				10,0 / 10,0							
PIKO 8.3				8,3 / 8,3							
PIKO 7.0				7,0 / 7,0							
Beispielhaft abge	leitete	Arbeitspunkt	e (bezogen auf ma	ximal verfügbare V	Virkleistung):						
PIKO 10.1											
	U	/ U _n = 0,9	$U/U_{n} = 0.95$	$U / U_n = 1,0$	U / U _n = 1,05	U / U _n = 1,1					
0.05	Р	= 9,5 kW	P = 9,5 kW	P = 9,5 kW	P = 9,5 kW	P = 9,5 kW					
$\cos \varphi = 0.95$	Q	= 3,1 kvar	Q = 3,1 kvar	Q = 3,1 kvar	Q = 3,1 kvar	Q = 3,1 kvar					
PIKO 8.3	•										
	U	$/U_{n} = 0.9$	$U/U_{n} = 0.95$	$U / U_n = 1.0$	$U / U_n = 1,05$	U / U _n = 1,1					
	Р	= 7,9 kW	P = 7,9 kW	P = 7,9 kW	P = 7,9 kW	P = 7,9 kW					
$\cos \varphi = 0.95$	Q	= 2,6 kvar	Q = 2,6 kvar	Q = 2,6 kvar	Q = 2,6 kvar	Q = 2,6 kvar					
PIKO 7.0											
	U	$/U_{n} = 0.9$	$U/U_{n} = 0.95$	$U / U_n = 1.0$	U / U _n = 1,05	U / U _n = 1,1					
	Р	= 6,7 kW	P = 6,7 kW	P = 6,7 kW	P = 6,7 kW	P = 6,7 kW					
$\cos \varphi = 0.95$	Q	= 2,2 kvar	Q = 2,2 kvar	Q = 2,2 kvar	Q = 2,2 kvar	Q = 2,2 kvar					

Seite 16 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

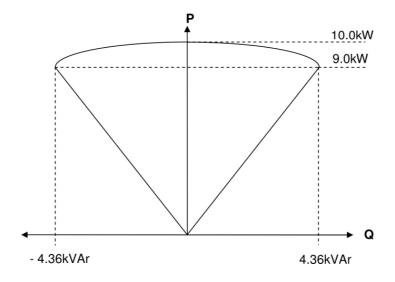
Schema der Blindleistungsbereitstellung

INDUSTRIE ELEKTRIK

Herstellererklärung über das Blindleistungsvermögen des PIKO10.1 Wechselrichter bei unterschiedlichen Netzspannungen

Bezug: TR3 – 4.3.1

Anmerkung: Werte in Klammern gelten für den PIKO 8.3 / PIKO 7.0

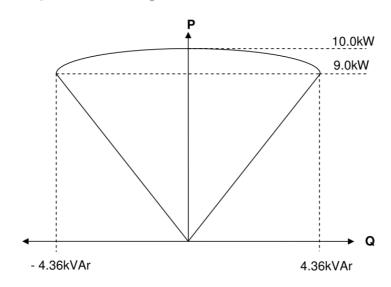

Beschreibung:

Der PIKO10.1 Wechselrichter weist eine CosPhi-Steuerung auf. Diese CosPhi-Steuerung ist unabhängig von der Netzspannung. Das Gerät ist derart parametrisiert, das der CosPhi-Wert auf einen Bereich 0.9 (induktiv) .. 1.0 .. 0.9 (kapazitiv) beschränkt ist.

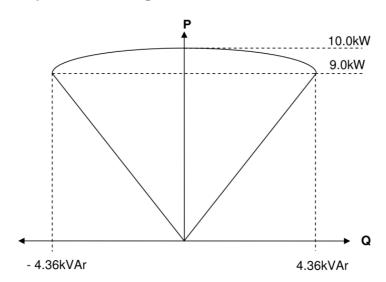
Im Fall einer Leistungsabregelung, d.h. eine Reduzierung der Schein- bzw. Wirkleistung, sorgt die cosPhi-Steuerung dafür, das der gewählte CosPhi-Wert stets Bestand hat.

Die Scheinleistung ist der Bezug für das Blind- und Wirkleistungsvermögen des Wechselrichter. Der PIKO10.1 ist ein 10kVA-Gerät (8.3kVA / 7.0kVA). Bei einem CosPhi von 0.9 ergibt sich damit eine maximale Blindleistung von 4.36kVAr (3.62kVAr / 3.05kVAr) bei 9.0kW (7.47kW / 6.30kW) Wirkleistung.

PQ-Diagramm für U_{AC}=1.0xU_{AC_Nomm}


Seite 17 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)


KOSTAL

INDUSTRIE ELEKTRIK

PQ-Diagramm für U_{AC} =0.9 xU_{AC_Nomm}

PQ-Diagramm für U_{AC}=1.1xU_{AC_Nomm}

Seite 18 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

R 3 – 4.3.2 Blindleistung nach Sollwertvorgabe	
PIKO 10	.1 DCS
Sollwert cosφ	Istwert cosφ ₆₀
0,900 ind	0,895
1	1,000
0,900 cap	0,900
Stufung cosφ [%]	0,01
PIKO 8.	3 DCS
Sollwert cosp	Istwert cosφ ₆₀
0,900 ind	0,900
1	1,000
0,900 cap	0,901
Stufung cosφ [%]	0,01

Seite 19 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Pi	rüfbericht (07THS186-TR3)		
TR 3 – 4.3.3 Q Über	gangsfunktion		
	PII	KO 10.1 DCS	
	P ₆₀ [kW]	Q ₆₀ [kVAr]	cos φ ₆₀
1. Test bei P = 50%		302 1	- 1
1. Stufe Q ₀	5,01	0,00	1,000
Einschwingzeit [s]		9,0	
2. Stufe - Q _{max}	5,03	-2,51	0,895
Einschwingzeit [s]	Piko 10.1 DCS		•
3. Stufe + Q _{max}	4,96	2,48	0,895
Einschwingzeit [s]		5,4	·
4. Stufe Q ₀	5,01	-0,01	1,000
maximale Einschwin	gzeit [s]		9,0
2. Test, falls Q(100%	$(P_n) > Q(50\%P_n) + 10\% P_n, t$	pei P = 100% P _n	
1. Stufe Q ₀			1,000
Einschwingzeit [s]			•
2. Stufe - Q _{max}	10,04	-4,52	0,912
Einschwingzeit [s]		5,6	•
3. Stufe + Q _{max}	10,03	5,23	0,887
Einschwingzeit [s]			•
4. Stufe Q ₀	10,09		1,000
maximale Einschwin			8,6
	3 [-]		•
	PI	KO 8.3 DCS	
	P ₆₀ [kW]	Q ₆₀ [kVAr]	cos φ ₆₀
1. Test bei P = 50%	P _n		•
1. Stufe Q ₀	4,12	-0,02	1,000
Einschwingzeit [s]		5,8	·
2. Stufe + Q _{max}	4,10	1,96	0,902
Einschwingzeit [s]		10,0	•
3. Stufe - Q _{max}	4,12	-1,99	0,900
Einschwingzeit [s]		3,8	·
4. Stufe Q ₀	4,12	-0,02	1,000
maximale Einschwin	gzeit [s]		10,0
2. Test, falls Q(100%	${}^{\prime\prime}_{N}P_{n}$) > Q(50% P_{n}) + 10% P_{n} , b	pei P = 100% P _n	
1. Stufe Q ₀			1,000
Einschwingzeit [s]		7,7	•
2. Stufe + Q _{max}	8,35	4,27	0,890
Einschwingzeit [s]		8,8	
3. Stufe - Q _{max}	8,36	-3,72	0,914
Einschwingzeit [s]		3,5	
4. Stufe Q ₀	8,39	0,16	1,000
maximale Einschwin	gzeit [s]		8,8
Anmerkung: Die Qualität der Blind	dleistungscharakteristik ist ide	ntisch bei dem Wechselrichte	r PIKO 7.0 DCS.
TR 3 – 4.3.4 Spannı	ungsregelung Q(U)		
Die Spannungsregel	ung wurde nicht geprüft.		
	- •		

Seite 20 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

- Auszug aus dem Prüfbericht (07THS186-TR3)								
TR 3 – 4.4.1 Schalthandlungen				_				
P	PIKO 10.1 DCS							
Max. Anzahl an Schalthandlungen, N ₁₀ (<i>Herstellerangabe</i>)		1,	03					
Max. Anzahl an Schalthandlungen, N ₁₂₀ (<i>Herstellerangabe</i>)		124	4,10					
Art der Schalthandlung	Einschalten bei 10% P _n							
Netzimpedanzwinkel, ψ _k	30°	50°	70°	85°				
Flickerstufenfaktor, $k_f(\psi_k)$	0,33	0,65	0,96	1,07				
Spannungsänderungsfaktor, $k_U(\psi_k)$	0,52	0,91	1,23	1,34				
Maximaler Schaltstromfaktor k _{imax}		0,	43					
Art der Schalthandlung		Einschalten	bei 100% P _n					
Netzimpedanzwinkel, ψ _k	30°	30° 50° 70°						
Flickerstufenfaktor, $k_f(\psi_k)$	0,63	0,63	0,91	0,99				
Spannungsänderungsfaktor, $k_U(\psi_k)$	1,13	1,11	1,16	1,23				
Maximaler Schaltstromfaktor k _{imax}	0,37							
Art der Schalthandlung	S	erviceabschalt	ung bei 100%	P _n				
Netzimpedanzwinkel, ψ _k	30°	50°	70°	85°				
Flickerstufenfaktor, $k_f(\psi_k)$	1,07	1,05	0,91	0,73				
Spannungsänderungsfaktor, $k_U(\psi_k)$	1,17	1,18	1,03	0,86				
Maximaler Schaltstromfaktor k _{imax}		1,	01					

Seite 21 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

	PIKO 8.3 DCS						
Max. Anzahl an Schalthandlungen, N ₁₀ (<i>Herstellerangabe</i>)		1,	,03				
Max. Anzahl an Schalthandlungen, N ₁₂₀ (<i>Herstellerangabe</i>)		124	4,10				
Art der Schalthandlung	Einschalten bei 10% P _n						
Netzimpedanzwinkel, ψ_k	30°	50°	70°	85°			
Flickerstufenfaktor, $k_f(\psi_k)$	0,31	0,50	0,70	0,77			
Spannungsänderungsfaktor, $k_U(\psi_k)$	1,16	1,14	1,18	1,23			
Maximaler Schaltstromfaktor k _{imax}		0,	20				
	<u> </u>						
Art der Schalthandlung		Einschalten	bei 100% P _n				
Netzimpedanzwinkel, ψ_k	30°	50°	70°	85°			
Flickerstufenfaktor, $k_f(\psi_k)$	0,71	0,90	1,14	1,22			
Spannungsänderungsfaktor, $k_U(\psi_k)$	1,97	1,96	2,03	1,99			
Maximaler Schaltstromfaktor k _{imax}		0,	48				
	•						
Art der Schalthandlung	S	Serviceabschalt	ung bei 100%	P _n			
Netzimpedanzwinkel, ψ _k	30°	50°	70°	85°			
Flickerstufenfaktor, $k_f(\psi_k)$	1,03	1,02	0,89	0,72			
Spannungsänderungsfaktor, k _U (ψ _k)	1,18	1,16	1,03	0,85			
Maximaler Schaltstromfaktor k _{imax}		1,	,01	•			
Anmorkung:							

Anmerkung:

Die Qualität der Schalthandlungscharakteristik ist identisch bei dem Wechselrichter PIKO 7.0 DCS. Die Faktoren können auf den PIKO 7.0 DCS mittels der Multiplikation mit $P_{n,PIKO8.3}/P_{n,PIKO7.0}$ übertragen werden.

Seite 22 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-T	Auszug aus dem Prüfbericht (07THS186-TR3)										
TR 3 – 4.4.2 Flicker											
	PIKO 10.1 DCS										
Netzimpedanzwinkel, ψ _k	30°	50°	70°	85°							
Flickerbeiwert, c(ψ _k)	1,67	1,70	1,57	1,36							
Kurzzeitflickerwert, P _{st}	0,03	0,03	0,03	0,03							
PIKO 8.3 DCS											
Netzimpedanzwinkel, ψ _k	30°	50°	70°	85°							
Flickerbeiwert, c(ψ _k)	0,90	0,91	0,86	0,79							
Kurzzeitflickerwert, P _{st}	0,02	0,02	0,02	0,02							

Anmerkung:

Die Qualität der Flickercharakteristik ist identisch bei dem Wechselrichter PIKO 7.0 DCS.

Der Flickerbeiwert kann auf den PIKO 7.0 DCS mittels der Multiplikation mit $P_{n,PIKO8.3}/P_{n,PIKO7.0}$ übertragen werden.

Seite 23 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

TR 3 – 4.4.3 Oberschwingungen

PIKO 10.1 DCS											
P/P _n [%]	4	10	20	30	40	50	60	70	80	90	100
Ordnung	I _h [%]	I _h [%									
1	10,36	11,26	19,65	30,21	42,02	50,20	60,26	70,9	80,64	90,46	100,
2	0,65	0,58	0,76	0,81	0,89	0,94	1,00	1,07	1,16	1,23	1,3
3	0,58	0,49	0,24	0,76	1,00	1,26	1,39	1,48	1,52	1,56	1,6
4	0,05	0,07	0,05	0,09	0,13	0,16	0,18	0,22	0,26	0,28	0,3
5	0,58	0,28	0,57	0,15	0,31	0,44	0,56	0,65	0,71	0,73	0,7
6	0,04	0,06	0,11	0,06	0,06	0,06	0,06	0,08	0,07	0,10	0,1
7	0,21	0,23	0,47	0,51	0,32	0,12	0,14	0,23	0,29	0,34	0,3
8	0,04	0,05	0,08	0,09	0,06	0,03	0,04	0,05	0,05	0,05	0,0
9	0,27	0,14	0,09	0,50	0,39	0,33	0,17	0,15	0,27	0,38	0,4
10	0,06	0,05	0,06	0,09	0,07	0,06	0,04	0,04	0,04	0,05	0,0
11	0,14	0,13	0,26	0,18	0,29	0,39	0,30	0,21	0,16	0,14	0,
12	0,04	0,06	0,13	0,09	0,11	0,12	0,08	0,07	0,07	0,07	0,0
13	0,17	0,11	0,20	0,18	0,22	0,33	0,30	0,22	0,15	0,13	0,
14	0,04	0,06	0,06	0,07	0,07	0,07	0,06	0,04	0,04	0,05	0,0
15	0,19	0,24	0,33	0,56	0,48	0,54	0,62	0,59	0,50	0,40	0,3
16	0,05	0,05	0,08	0,12	0,08	0,09	0,10	0,08	0,07	0,06	0,0
17	0,09	0,08	0,19	0,18	0,17	0,11	0,20	0,21	0,20	0,16	0,
<u>18</u> 19	0,04	0,05 0,07	0,12	0,09	0,08	0,07	0,07 0,12	0,07	0,07 0,21	0,05 0,18	0,0
20	0,08	0,07	0,08	0,07 0,04	0,17 0,07	0,11 0,05	0,12	0,20 0,06	0,21	0,18	0,0
21	0,03	0,04	0,03	0,04	0,07	0,05	0,04	0,00	0,00	0,00	0,0
22	0,07	0,03	0,07	0,06	0,06	0,13	0,04	0,11	0,13	0,12	0,0
23	0,02	0,03	0,00	0,16	0,00	0,00	0,12	0,06	0,00	0,03	0,
24	0,03	0,03	0,03	0,04	0,04	0,04	0,05	0,04	0,04	0,04	0,0
25	0,02	0,03	0,04	0,08	0,10	0,19	0,17	0,05	0,08	0,15	0,
26	0,02	0,02	0,03	0,04	0,06	0,07	0,07	0,04	0,04	0,05	0,0
27	0,03	0,03	0,04	0,05	0,04	0,05	0,06	0,05	0,05	0,05	0,0
28	0,01	0,02	0,04	0,03	0,04	0,03	0,06	0,04	0,03	0,03	0,0
29	0,02	0,03	0,05	0,06	0,08	0,04	0,14	0,11	0,05	0,05	0,0
30	0,01	0,02	0,02	0,03	0,03	0,04	0,03	0,03	0,04	0,03	0,
31	0,02	0,02	0,03	0,05	0,05	0,04	0,07	0,10	0,07	0,04	0,0
32	0,01	0,02	0,02	0,03	0,03	0,03	0,04	0,05	0,04	0,03	0,0
33	0,01	0,02	0,02	0,02	0,03	0,03	0,04	0,04	0,03	0,04	0,0
34	0,01	0,02	0,03	0,02	0,02	0,03	0,02	0,03	0,04	0,03	0,0
35	0,02	0,02	0,02	0,03	0,03	0,06	0,02	0,07	0,07	0,06	0,
36	0,01	0,01	0,02	0,01	0,02	0,02	0,03	0,02	0,04	0,02	0,0
37	0,01	0,02	0,02	0,02	0,02	0,04	0,02	0,03	0,06	0,06	0,0
38	0,01	0,01	0,02	0,03	0,02	0,03	0,02	0,02	0,03	0,03	0,0
39	0,01	0,01	0,01	0,02	0,02	0,03	0,03	0,03	0,03	0,04	0,0
40	0,01	0,01	0,02	0,02	0,02	0,02	0,03	0,02	0,03	0,03	0,0
41	0,01	0,01	0,02	0,02	0,03	0,02	0,04	0,02	0,04	0,05	0,0
42	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,0
43 44	0,01	0,01	0,01	0,01	0,02	0,01	0,03 0,02	0,02	0,03	0,04	0,0
44 45	0,01	0,01 0,02	0,01 0,01	0,01 0,02	0,02	0,02	0,02	0,02 0,02	0,02	0,03	0,0
45 46	0,01	0,02	0,01	0,02	0,02	0,01	0,03	0,02	0,02	0,03	0,0
47	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,01	0,02	0,0
48	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,03	0,01	0,03	0,0
49	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,02	0,01	0,02	0,0
50	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,03	0,02	0,02	0,0
THC [%]	1,16	0,94	1,24	1,52	1,64	1,88	2,02	2,13	2,21	2,29	2,4

Anmerkung:

Der Referenzstrom ist 14,5 A.

Die Oberschwingungswerte sind Maximalwerte aus allen Phasen.

Seite 24 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

TR 3 – 4.4.3 Zwischenharmonische im Normalbetrieb

PIKO 10.1 DCS											
P/Pn [%]	4	10	20	30	40	50	60	70	80	90	10
f [Hz]	I _h [%]	I _h ['									
75	0,13	0,42	0,06	0,11	0,85	0,13	0,14	0,15	0,16	0,16	0,2
125	0,03	0,10	0,03	0,04	0,16	0,05	0,05	0,06	0,06	0,07	0,0
175	0,03	0,06	0,03	0,03	0,07	0,04	0,04	0,04	0,05	0,05	0,
225	0,03	0,05	0,03	0,03	0,06	0,04	0,04	0,04	0,05	0,05	0,
275	0,03	0,05	0,03	0,03	0,04	0,03	0,04	0,04	0,04	0,04	0,
325	0,03	0,04	0,03	0,03	0,04	0,03	0,04	0,04	0,04	0,04	0,
375	0,03	0,04	0,03	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,
425	0,03	0,04	0,03	0,03	0,04	0,03	0,04	0,04	0,04	0,04	0,
475	0,04	0,04	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,
525	0,04	0,04	0,03	0,04	0,04	0,04	0,05	0,04	0,04	0,05	0,
575	0,04	0,04	0,04	0,04	0,05	0,04	0,05	0,04	0,05	0,05	0,
625	0,04	0,04	0,04	0,04	0,05	0,04	0,05	0,05	0,05	0,05	0,
675	0,04	0,05	0,04	0,05	0,05	0,05	0,06	0,05	0,06	0,06	0,
725	0,04	0,06	0,06	0,06	0,08	0,06	0,07	0,06	0,12	0,23	0,
775	0,04	0,05	0,05	0,05	0,06	0,05	0,06	0,05	0,07	0,08	0,
825	0,04	0,05	0,05	0,05	0,06	0,05	0,06	0,05	0,06	0,06	0,
875	0,04	0,04	0,05	0,05	0,05	0,05	0,06	0,05	0,05	0,05	0,
925	0,04	0,04	0,04	0,05	0,05	0,05	0,06	0,05	0,05	0,05	0,
975	0,04	0,04	0,04	0,04	0,05	0,04	0,05	0,05	0,05	0,05	0,
1025	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,05	0,06	0,
1075	0,03	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,05	0,05	0,
1125	0,03	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,05	0,05	0,
1175	0,03	0,03	0,04	0,04	0,05	0,04	0,05	0,05	0,05	0,05	0,
1225	0,02	0,03	0,04	0,04	0,05	0,04	0,05	0,05	0,05	0,05	0,
1275	0,02	0,03	0,03	0,04	0,05	0,04	0,05	0,04	0,05	0,05	0,
1325	0,02	0,03	0,03	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,
1375	0,02	0,03	0,03	0,03	0,04	0,04	0,05	0,04	0,05	0,05	0,
1425	0,01	0,03	0,03	0,03	0,04	0,04	0,04	0,04	0,05	0,05	0,
1475	0,02	0,03	0,03	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,
1525	0,01	0,03	0,03	0,03	0,03	0,03	0,04	0,04	0,04	0,04	0,
1575	0,01	0,02	0,02	0,03	0,03	0,03	0,04	0,03	0,04	0,04	0,
1625	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,03	0,04	0,04	0,
1675	0,01	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,03	0,04	0,
1725	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,03	0,04	0,
1775	0,02	0,02	0,02	0,02	0,03	0,02	0,03	0,03	0,03	0,04	0,
1825	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,
1875	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,
1925	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,02	0,03	0,03	0,
1975	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,

Anmerkung:

Der Referenzstrom ist 14,5 A.

Die Oberschwingungswerte sind Maximalwerte aus allen Phasen.

Seite 25 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

TR 3 – 4.4.3 Höhere Frequenzen im Normalbetrieb

ΓR 3 – 4.4.3 Höh	- 4.4.3 Höhere Frequenzen im Normalbetrieb											
				PIK	O 10.1 D	CS						
P/P _n [%]	4	10	20	30	40	50	60	70	80	90	100	
f [kHz]	I _h [%]	I _h [%]	I _h [%]	I _h [%]	I _h [%]	I _h [%]	I _h [%]	I _h [%]	I _h [%]	I _h [%]	I _h [%]	
2,1	0,04	0,05	0,05	0,05	0,06	0,06	0,07	0,06	0,07	0,09	0,10	
2,3	0,05	0,06	0,06	0,07	0,07	0,07	0,08	0,08	0,08	0,09	0,10	
2,5	0,03	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,06	0,06	0,06	
2,7	0,03	0,04	0,03	0,04	0,04	0,04	0,05	0,05	0,06	0,05	0,05	
2,9	0,03	0,04	0,04	0,04	0,04	0,04	0,05	0,05	0,06	0,06	0,05	
3,1	0,03	0,04	0,03	0,04	0,04	0,04	0,04	0,05	0,04	0,05	0,05	
3,3	0,03	0,04	0,03	0,04	0,04	0,04	0,04	0,05	0,04	0,05	0,05	
3,5	0,03	0,04	0,03	0,04	0,04	0,04	0,04	0,05	0,04	0,05	0,06	
3,7	0,04	0,05	0,04	0,05	0,05	0,05	0,05	0,06	0,06	0,06	0,07	
3,9	0,04	0,04	0,03	0,04	0,04	0,05	0,04	0,05	0,05	0,06	0,07	
4,1	0,03	0,03	0,02	0,03	0,04	0,05	0,04	0,04	0,04	0,06	0,07	
4,3	0,02	0,02	0,02	0,02	0,04	0,06	0,06	0,05	0,04	0,06	0,07	
4,5	0,02	0,02	0,02	0,02	0,03	0,04	0,07	0,06	0,04	0,05	0,05	
4,7	0,01	0,01	0,01	0,01	0,03	0,03	0,05	0,08	0,06	0,04	0,05	
4,9	0,01	0,01	0,01	0,01	0,02	0,02	0,03	0,08	0,10	0,05	0,05	
5,1	0,01	0,01	0,01	0,01	0,02	0,01	0,02	0,05	0,13	0,08	0,06	
5,3	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,04	0,10	0,11	0,09	
5,5	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,05	0,08	0,14	
5,7	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,03	0,05	0,12	
5,9	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,03	0,07	
6,1	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,04	
6,3	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	
6,5	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	
6,7	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	
6,9	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
7,1	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
7,3	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
7,5	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
7,7	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
7,9	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
8,1	0,02	0,02	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,02	
8,3	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	
8,5	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,05	
8,7	0,03	0,06	0,06	0,07	0,09	0,10	0,13	0,16	0,19	0,24	0,29	

0,14

0,16

0,18

0,21

0,24

Anmerkung:

8,9

Der Referenzstrom ist 14,5 A.

0,30

Die Oberschwingungswerte sind Maximalwerte aus allen Phasen.

0,29 0,16

0,14

0,13

0,14

Seite 26 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

TR 3 – 4.4.3 Oberschwingungen

				PIK	O 8.3 DO	CS					
P/P _n [%]	4	10	20	30	40	50	60	70	80	90	10
Ordnung	I _h [%]	I _h									
1	9,84	13,77	19,93	30,11	39,98	49,65	59,77	70,62	80,72	90,66	10
2	0,63	0,74	0,90	0,93	0,98	1,05	1,11	1,17	1,25	1,31	1,
3	1,03	0,78	0,39	0,66	1,04	1,31	1,50	1,65	1,75	1,82	1,
4	0,06	0,08	0,08	0,08	0,12	0,16	0,18	0,21	0,25	0,26	0,
5	0,36	0,42	0,71	0,42	0,07	0,26	0,52	0,65	0,74	0,78	0,
6	0,04	0,06	0,12	0,10	0,06	0,07	0,07	0,08	0,08	0,09	0,
7	0,45	0,33	0,36	0,67	0,54	0,33	0,16	0,14	0,23	0,33	0,
8	0,05	0,06	0,08	0,12	0,11	0,05	0,04	0,05	0,05	0,05	0,
9	0,07	0,21	0,31	0,41	0,65	0,59	0,41	0,23	0,15	0,24	0,
10	0,05	0,06	0,07	0,06	0,13	0,12	0,08	0,06	0,05	0,05	0,
11	0,24	0,18	0,21	0,10	0,32	0,48	0,48	0,38	0,29	0,22	0,
12	0,04	0,06	0,12	0,09	0,16	0,19	0,14	0,10	0,07	0,08	0,
13	0,11	0,14	0,21	0,37	0,09	0,31	0,39	0,37	0,29	0,23	0,
14	0,04	0,05	0,08	0,12	0,06	0,07	0,09	0,08	0,06	0,07	0,
15	0,24	0,27	0,38	0,57	0,60	0,42	0,62	0,72	0,69	0,59	0,
16	0,06	0,06	0,08	0,10	0,13	0,06	0,10	0,12	0,10	0,10	0,
17	0,11	0,10	0,16	0,12	0,29	0,21	0,12	0,23	0,26	0,24	0,
18	0,03	0,05	0,10	0,11	0,14	0,11	0,07	0,09	0,09	0,09	0,
19	0,06	0,08	0,11	0,19	0,19	0,29	0,15	0,10	0,22	0,27	0,
20	0,04	0,04	0,05	0,11	0,05	0,11	0,07	0,05	0,06	0,09	0,
21	0,09	0,06	0,07	0,14	0,07	0,20	0,19	0,08	0,11	0,15	0,
22	0,03	0,04	0,04	0,07	0,06	0,10	0,10	0,05	0,05	0,07	0,
23	0,04	0,06	0,08	0,08	0,16	0,13	0,27	0,18	0,06	0,13	0,
24	0,02	0,03	0,04	0,04	0,06	0,06	0,05	0,06	0,05	0,05	0,
25	0,04	0,04	0,06	0,08	0,16	0,05	0,22	0,22	0,11	0,06	0,
26	0,02	0,03	0,04	0,05	0,07	0,04	0,09	0,10	0,06	0,04	0,
27	0,03	0,03	0,04	0,05	0,06	0,06	0,06	0,08	0,07	0,06	0,
28	0,01	0,02	0,03	0,04	0,04	0,05	0,04	0,06	0,05	0,05	0,
29	0,02	0,03	0,05	0,07	0,04	0,12	0,04	0,16	0,16	0,10	0,
30	0,01	0,02	0,02	0,03	0,03	0,03	0,05	0,04	0,04	0,05	0,
31	0,02	0,03	0,04	0,03	0,04	0,07	0,05	0,07	0,12	0,12	0,
32	0,01	0,02	0,03	0,03	0,05	0,05	0,04	0,04	0,05	0,06	0,
33	0,02	0,02	0,02	0,03	0,03	0,05	0,04	0,04	0,06	0,05	0,
34 35	0,01	0,02	0,03 0,02	0,03 0,04	0,04	0,02	0,04 0,07	0,03	0,04	0,04	0,
		0,02	0,02		0,04	0,03		0.04	0,06	0.04	0,
36 37	0,01	0,02 0,02	0,02	0,02 0,02	0,02 0,02	0,02	0,02 0,05	0,04	0,03	0,04	0,
38	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,04	0,03	0,08	0,
39	0,01	0,01	0,02	0,02	0,02	0,03	0,03	0,03	0,02	0,04	0,
40	0,01	0,01	0,02	0,02	0,02	0,02	0,04	0,03	0,03	0,04	0,
41	0,01	0,01	0,02	0,02	0,02	0,03	0,02	0,05	0,02	0,03	0,
42	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,02	0,
43	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,02	0,
44	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,02	0,
45	0,01	0,02	0,02	0,01	0,02	0,02	0,02	0,03	0,03	0,02	0,
46	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,02	0,
47	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,
48	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,
49	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,
50	0,01	0,02	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,
THC [%]	1,40	1,30	1,44	1,67	1,88	2,05	2,25	2,39	2,50	2,57	2,

Anmerkung:

Der Referenzstrom ist 12,0 A.

Die Oberschwingungswerte sind Maximalwerte aus allen Phasen.

Übertragung: siehe "Höhere Frequenzen"

Seite 27 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

TR 3 – 4.4.3 Zwischenharmonische im Normalbetrieb

PIKO 8.3 DCS P/Pn [%] 0 10 20 30 40 50 60 70 80 f [Hz] Ih [%] Ih [%] <th>90 I_h [%] 0,18 0,07 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06 0,07 0,08</th> <th>100 I_h [%] 0,19 0,08 0,06 0,05 0,05 0,05 0,05 0,05 0,06 0,06</th>	90 I _h [%] 0,18 0,07 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06 0,07 0,08	100 I _h [%] 0,19 0,08 0,06 0,05 0,05 0,05 0,05 0,05 0,06 0,06
f [Hz] I _h [%] <	I _h [%] 0,18 0,07 0,05 0,05 0,05 0,05 0,05 0,05 0,05	I _h [%] 0,19 0,08 0,06 0,06 0,05 0,05 0,05 0,05 0,05
75 0,13 0,40 0,34 0,17 0,16 0,11 0,14 0,15 0,18 125 0,03 0,09 0,09 0,04 0,05 0,05 0,06 0,07 0,07 175 0,03 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 225 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 275 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,04 0,05 0,05 0,05 425 <td< th=""><th>0,18 0,07 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06</th><th>0,19 0,08 0,06 0,05 0,05 0,05 0,05 0,05 0,05</th></td<>	0,18 0,07 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06	0,19 0,08 0,06 0,05 0,05 0,05 0,05 0,05 0,05
125 0,03 0,09 0,09 0,04 0,05 0,06 0,07 0,07 175 0,03 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 225 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 275 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,04 325 0,04 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,04 375 0,04 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,05 425 0,04 0,05 0,04 0,04 0,04 0,04 0,05 0,05 475 0,04 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 </td <td>0,07 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06</td> <td>0,08 0,06 0,06 0,05 0,05 0,05 0,05 0,05</td>	0,07 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06	0,08 0,06 0,06 0,05 0,05 0,05 0,05 0,05
175 0,03 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 225 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 275 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,04 325 0,04 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,04 375 0,04 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,05 425 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 475 0,04 0,05 0,05 0,04 0,05 0,	0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,06	0,06 0,05 0,05 0,05 0,05 0,05 0,05
225 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 275 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,04 325 0,04 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,04 375 0,04 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,05 425 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 475 0,04 0,05 0,05 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,06 0,05 525 0,04 0,05 0,	0,05 0,05 0,05 0,05 0,05 0,06 0,06 0,07	0,06 0,05 0,05 0,05 0,05 0,05 0,06
275 0,04 0,05 0,04 0,05 0,05 0,05 425 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 475 0,04 0,05 0,05 0,04 0,05 0,04 0,04 0,04 0,04 0,06 0,05 525 0,04 0,05	0,05 0,05 0,05 0,05 0,06 0,06 0,07	0,05 0,05 0,05 0,05 0,05 0,06
325 0,04 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,04 375 0,04 0,05 0,04 0,04 0,04 0,04 0,05 0,05 425 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 475 0,04 0,05 0,05 0,04 0,05 0,04 0,06 0,05 525 0,04 0,05 0,05 0,05 0,05 0,05 0,05 0,05 575 0,04 0,05 0,05 0,05 0,05 0,05 0,05 0,05	0,05 0,05 0,05 0,06 0,06 0,07	0,05 0,05 0,05 0,05 0,06
375 0,04 0,05 0,05 0,04 0,04 0,04 0,04 0,05 0,05 0,05 425 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,05 475 0,04 0,05 0,05 0,04 0,05 0,04 0,06 0,05 525 0,04 0,05 0,05 0,05 0,05 0,05 0,05 0,05 575 0,04 0,05 0,05 0,05 0,05 0,05 0,05 0,05	0,05 0,05 0,06 0,06 0,07	0,05 0,05 0,05 0,06
425 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05 475 0,04 0,05 0,04 0,05 0,04 0,04 0,04 0,06 0,05 525 0,04 0,05 <td>0,05 0,06 0,06 0,07</td> <td>0,05 0,05 0,06</td>	0,05 0,06 0,06 0,07	0,05 0,05 0,06
475 0,04 0,05 0,05 0,04 0,05 0,04 0,04 0,04 0,06 0,05 525 0,04 0,05	0,06 0,06 0,07	0,05 0,06
525 0,04 0,05	0,06 0,07	0,06
575 0,04 0,05 0,05 0,05 0,05 0,05 0,05 0,0	0,07	
		0.06
	0,08	0,00
625 0,05 0,05 0,05 0,06 0,05 0,06 0,07 0,06		0,07
675 0,05 0,05 0,06 0,05 0,06 0,06 0,06 0,0	0,09	0,08
725 0,06 0,07 0,09 0,09 0,10 0,14 0,16 0,19 0,25	0,32	0,39
775 0,05 0,06 0,07 0,06 0,07 0,07 0,08 0,09 0,09	0,11	0,10
825 0,05 0,05 0,06 0,06 0,06 0,06 0,06 0,0	0,10	0,09
875 0,05 0,05 0,05 0,05 0,06 0,06 0,06 0,0	0,09	0,07
925 0,05 0,05 0,05 0,05 0,06 0,06 0,06 0,0	0,09	0,08
975 0,05 0,05 0,05 0,05 0,06 0,05 0,05 0,0	0,08	0,07
1025 0,04 0,05 0,05 0,05 0,06 0,05 0,06 0,07 0,06	0,08	0,08
1075 0,04 0,04 0,05 0,05 0,06 0,05 0,05 0,07 0,06	0,08	0,07
1125 0,04 0,04 0,05 0,05 0,06 0,05 0,06 0,07 0,06	0,08	0,08
1175 0,04 0,04 0,05 0,05 0,05 0,05 0,05 0,0	0,07	0,07
1225 0,03 0,04 0,04 0,05 0,05 0,05 0,06 0,06	0,07	0,07
1275 0,03 0,04 0,04 0,04 0,05 0,05 0,05 0,06 0,06	0,07	0,07
1325 0,03 0,03 0,04 0,04 0,05 0,05 0,05 0,06 0,06	0,07	0,07
1375 0,02 0,03 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0,06	0,07
1425 0,02 0,03 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0,06	0,06
1475 0,02 0,03 0,04 0,04 0,05 0,05 0,05 0,05 0,06	0,07	0,07
1525 0,02 0,03 0,03 0,04 0,04 0,04 0,05 0,05	0,06	0,06
1575 0,02 0,03 0,03 0,03 0,03 0,04 0,04 0,04	0,05	0,05
1625 0,02 0,03 0,03 0,03 0,03 0,03 0,04 0,04	0,05	0,05
1675 0,02 0,02 0,03 0,03 0,03 0,03 0,04 0,04	0,05	0,05
1725 0,02 0,02 0,03 0,03 0,03 0,03 0,04 0,04	0,04	0,05
1775 0,02 0,02 0,03 0,03 0,03 0,03 0,03 0,04	0,04	0,04
1825 0,02 0,02 0,02 0,02 0,03 0,03 0,03 0,03	0,04	0,04
1875 0,02 0,02 0,02 0,02 0,03 0,03 0,03 0,03	0,04	0,04
1925 0,02 0,02 0,02 0,02 0,03 0,02 0,03 0,03	0,04	0,04
1975 0,02 0,02 0,02 0,02 0,02 0,02 0,03 0,03	0,04	0,04

Anmerkung:

Der Referenzstrom ist 12,0 A.

Die Oberschwingungswerte sind Maximalwerte aus allen Phasen.

Übertragung: siehe "Höhere Frequenzen"

Seite 28 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

TR 3 – 4.4.3 Höhere Frequenzen im Normalbetrieb

PIKO 8.3 DCS												
P/P _n [%]	0	10	20	30	40	50	60	70	80	90	100	
f [kHz]	I _h [%]											
2,1	0,05	0,05	0,06	0,06	0,07	0,07	0,07	0,09	0,08	0,08	0,10	
2,3	0,07	0,08	0,07	0,08	0,08	0,08	0,09	0,09	0,10	0,10	0,10	
2,5	0,04	0,05	0,04	0,04	0,05	0,05	0,06	0,05	0,06	0,07	0,06	
2,7	0,04	0,05	0,04	0,04	0,04	0,04	0,05	0,06	0,05	0,07	0,06	
2,9	0,04	0,05	0,04	0,04	0,05	0,05	0,05	0,06	0,06	0,06	0,06	
3,1	0,04	0,05	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,05	
3,3	0,04	0,05	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,06	0,05	
3,5	0,04	0,05	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,06	0,05	
3,7	0,06	0,06	0,05	0,05	0,06	0,06	0,06	0,06	0,07	0,07	0,07	
3,9	0,06	0,05	0,04	0,04	0,05	0,06	0,06	0,05	0,05	0,06	0,06	
4,1	0,03	0,04	0,03	0,03	0,04	0,05	0,06	0,05	0,05	0,05	0,06	
4,3	0,03	0,03	0,02	0,03	0,03	0,04	0,07	0,07	0,06	0,06	0,05	
4,5	0,02	0,02	0,02	0,02	0,02	0,03	0,05	0,07	0,07	0,06	0,05	
4,7	0,01	0,02	0,01	0,01	0,02	0,02	0,03	0,05	0,08	0,08	0,07	
4,9	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,04	0,07	0,11	0,10	
5,1	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,03	0,05	0,09	0,15	
5,3	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,03	0,05	0,12	
5,5	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,03	0,06	
5,7	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,04	
5,9	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,03	
6,1	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	
6,3	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	
6,5	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
6,7	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
6,9	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
7,1	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
7,3	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
7,5	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
7,7	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	
7,9	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	
8,1	0,02	0,03	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02	
8,3	0,03	0,03	0,03	0,03	0,02	0,01	0,01	0,01	0,01	0,01	0,02	
8,5	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04	0,05	0,05	0,05	
8,7	0,12	0,09	0,07	0,08	0,09	0,10	0,12	0,15	0,17	0,19	0,18	
8,9	0,64	0,50	0,21	0,18	0,17	0,16	0,16	0,17	0,18	0,20	0,22	

Anmerkung:

Der Referenzstrom ist 12,0 A.

Die Oberschwingungswerte sind Maximalwerte aus allen Phasen.

Die Qualität der Oberschwingungscharakteristik ist identisch bei dem Wechselrichter PIKO 7.0 DCS.

Die absoluten Harmonischenwerte oberhalb Ordnung 1 des PIKO 8.3 DCS können auf den PIKO 7.0 DCS übertragen werden.

Seite 29 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

TR 3 – 4.5 Trennung der EZE vom Netz

PIKO 10.1 DCS									
	Einstellwert	Auslösewert	Einstellwert [ms]	Abschaltzeit [ms]					
Frequenzrückgangsschutz	47,50 Hz	47,52 Hz	100	109 111					
Frequenzsteigerungsschutz	51,50 Hz	51,47 Hz	100	86 104					
Spannungsrückgangsschutz (1. Stufe)	184,0 V	184,5 V	1000	988 1004					
Spannungsrückgangsschutz (2. Stufe)	104,0	105,0	300	285 317					
Spannungssteigerungsschutz	264,0 V	265,1 V	100	85 92					

Eigenzeit der Abschalteinheit (Herstellerangabe) 10 ms

Anmerkung:

Die Qualität der Netzschutzcharakteristik ist identisch bei den Wechselrichtern PIKO 8.3 DCS und PIKO 7.0 DCS.

TR 3 – 4.6 Zuschaltbedingungen

PIKO 10.1 DCS							
Einstellwert Zuschaltung bei							
Unterspannung [V]	218,0	221,0					
Unterfrequenz [Hz]	47,50	47,50					
Überfrequenz [Hz]	50,02	50,05					

Anmerkung:

Die Qualität der Zuschaltcharakteristik ist identisch bei den Wechselrichtern PIKO 8.3 DCS und PIKO 7.0 DCS.

Seite 30 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)

TR 3 – 4.7 Verhalten bei Störungen im Netz

PIKO 10.1 DCS

Die Erzeugungseinheit PIKO 10.1 DCS erkennt und durchfährt symmetrische wie unsymmetrische Spannungseinbrüche mit Mindestdauern wie in der Netzanschlussregel spezifiziert.

Bei symmetrischen Spannungseinbrüchen erfolgt eine definierte Blindstromeinspeisung entsprechend der K-Faktor-Kennlinie des TransmissionCode 2007.

Bei unsymmetrischen Spannungseinbrüchen erfolgt eine definierte Blindstromeinspeisung entsprechend der K-Faktor-Kennlinie des TransmissionCode 2007.

Der Spannungsreferenzwert vor dem Fehler basiert auf dem Einperiodenwert der einzelnen Phase-Neutral-Spannungen.

In unsymmetrische Fehler wird unterschieden, indem jede einzelne Phase-Neutral-Spannungsbweichung durch die Summe aller drei vorliegenden Spannungsabweichungen geteilt wird. Bleibt dieser Wert kleiner 0,5 so wird ein symmetrischer Einbruch detektiert, ansonsten ein unsymmetrischer.

Nur die symmetrischen Einbrüche wurden gemäß der geforderten Blindstromcharakteristik von Netzanschlussregel und TR8 bewertet.

Die Anforderungen an die Wirkleistung nach Fehlerklärung werden in allen Tests erfüllt.

Der K-Faktor in der Erzeugungseinheit ist fest auf 2 eingestellt.

Kurzschlussstrombeiträge						
Test no.	1.1.1.a					
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n]	0,3					
Scheitelwert bei Fehlereintritt I _p [A]	50,4					
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	1,0 / 0,3					
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	9,1 / 0,6					
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	16,3 / 0,1					
Test no.	1.1.2.a					
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n]	0,5					
Scheitelwert bei Fehlereintritt I _p [A]	28,3					
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	3,9 / 3,1					
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	8,7 / 0,3					
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	16,2 / 0,1					
Test no.	1.2.1.a					
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n pro Phase]	81,3	1,6	86,9			
Scheitelwert bei Fehlereintritt I _p [A]	44,9					
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	1,8 / 1,3					
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	7,5 / 3,0					
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	13,1 / 5,8					
Test no.	1.2.2.a					
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n pro Phase]	81,1	1,9	86,7			
Scheitelwert bei Fehlereintritt I _p [A]	23,8					
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	3,0 / 2,3					
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	erioden Effektivwert 150ms nach Fehlereintritt [A] 7,7 / 3,9					
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	12,8 / 6,0					

Seite 31 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Auszug aus dem Prüfbericht (07THS186-TR3)			
Test no.	2.1.1.a		
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n]	31,9		
Scheitelwert bei Fehlereintritt I _p [A]	37,3		
Halbschwingungseffektivwert bei Fehlereintritt I ₁₀ [A]	1,0 / 0,2		
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	16,9 / 0,0		
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	16,8 / 0,0		
Test no.	2.1.2.a		
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%Un]	31,9		
Scheitelwert bei Fehlereintritt I _p [A]	23,7		
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	5,1 / 3,7		
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	16,9 / 0,0		
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	16,9 / 0,0		
Test no.	2.2.1.a		
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%Un pro Phase]	83,5	20,6	87,8
Scheitelwert bei Fehlereintritt I _p [A]	39,1		
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	2,0 / 1,5		
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	11,9 / 6,4		
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	11,8 / 6,4		
Test no.	2.2.2.a		
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%Un pro Phase]	83,3	20,8	87,8
Scheitelwert bei Fehlereintritt I _p [A]	22,7		
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	3,3 / 2,8		
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	11,2 / 5,6		
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	11,4 / 6,6		
Test no.	3.1.1.a		
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%Un]	49,9		
Scheitelwert bei Fehlereintritt I _p [A]	32,2		
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	1,0 / 0,3		
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	15,4 / 0,2		
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	15,4 / 0,2		
Test no.	3.1.2.a		
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%Un]	50,7		
Scheitelwert bei Fehlereintritt I _p [A]	21,9		
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	3,5 / 2,8		
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	15,3 / 0,2		
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	15,3 / 0,3		
Test no.	3.2.1.a		
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%Un pro Phase]	87,8	49,9	90,6
Scheitelwert bei Fehlereintritt I _p [A]	29,6		
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	1,8 / 1,4		
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	10,2 / 6,8		
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	10,1 / 6,8		

Seite 32 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Test no.	3.2.2.a			
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n pro Phase]	87,5	50,3	90,7	
Scheitelwert bei Fehlereintritt I _p [A]	21,2		<u>.</u>	
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	2,6 / 2,3			
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	8,9 / 4,0			
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	8,9 / 4,4			
Test no.	4.1.1.a			
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n]	75,7			
Scheitelwert bei Fehlereintritt I _p [A]	24,7			
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	12,7 / 1,9			
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	13,6 / 0,0			
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	11,9 / 0,0	11,9 / 0,0		
Test no.	4.1.2.a			
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n]	75,3			
Scheitelwert bei Fehlereintritt I _p [A]	12,2			
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	3,1 / 1,5			
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	8,1 / 0,1			
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	8,1 / 0,0			
Test no.	4.2.1.a			
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n pro Phase]	93,8	75,7	95,5	
Scheitelwert bei Fehlereintritt I _p [A]	23,2			
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	12,3 / 1,6			
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	10,3 / 2,4			
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	11,6 / 2,4			
Test no.	4.2.2.a			
1-Perioden Effektivwert der Spannung (P-N) bei Fehlereintritt [%U _n pro Phase]	93,1	75,4	94,9	
Scheitelwert bei Fehlereintritt I _p [A]	11,8			
Halbschwingungseffektivwert bei Fehlereintritt I _{t0} [A]	2,6 / 1,4			
1-Perioden Effektivwert 150ms nach Fehlereintritt [A]	3,9 / 2,3			
1-Perioden Effektivwert 20ms vor Spannungswiederkehr [A]	3,9 / 2,3			

Anmerkung:

Der Scheitelwert ist der Maximalwert aus den Messreihen der drei Phasen und dem jeweiligen 20 ms-Fenster nach dem Spannungseinbruch.

Die Effektivwerte sind aus dem System der symmetrischen Komponenten entnommen. Dabei gibt ein Wert bzw. der erste Wert den Mitsystembetrag und der zweite den Gegensystembetrag wieder.

Die Qualität des Verhaltens im dynamischen Fehlerfall ist identisch bei den Wechselrichtern PIKO 8.3 DCS und PIKO 7.0 DCS.

Seite 33 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Beschreibung des Erzeugungseinheitenmodells

Beschreibung des Simulationsmodells

Das diskrete dynamische und statische Simulationsmodell wurde in Matlab/Simulink erstellt.

Das dynamische Modell wurde entsprechend den symmetrischen Einbrüchen aus den Vermessungen aus TR3 – 4.7 validiert (Validierungssimulationsschrittweite 10 kHz).

Das Simulationsmodell ist entsprechend den Vorgaben der TR8 plausibilisiert.

Zusätzliche Kraftwerkseigenschaften des einphasigen statischen Modells wurden mit den entsprechenden Vermessungen aus TR3 verglichen (Umfang der TR3 Kapitel: 4.2.1 – 4.2.3, 4.3.1 – 4.3.3, 4.5, 4.6).

Die Initialisierungsdauer des statischen und dynamischen Modells wird hauptsächlich durch die parametrierbare Wiederzuschaltzeit bestimmt (Parameter *GIP_Delay*).

Das dynamische Modell muss mindestens 100 ms in einem stationären Zustand arbeiten, sodass alle Subsysteme vollständig initialisiert sind.

Das dynamische Modell basiert auf der Überwachung der drei P-N-Spannungen. Die maximale Spannungsabweichung einer Phase wird als Referenz zur Berechnung des Stützstroms, der in gleicher Höhe in jede Phase eingespeist wird, genutzt. Die Vorfehlerreferenzspannung ist entspricht dem 1Perioden-RMS-Wert vor dem Fehler. Der K-Faktor beträgt starr 2.

Falls ein Spannungseinbruch auftritt, wird der Stromfluss für 2 ms abgeschaltet. Danach steigt der Blindstrom bis zur geforderten Größe an. Der Wirkstrom wird, falls nötig, entsprechend reduziert: $i_W = sqrt(i_{S,max}^2 - i_{B,ref}^2)$.

Der Blindstrom ist auf den maximalen Scheinstrom von 115%I_n limitiert.

Die Unterscheidung in symmetrische und unsymmetrische Fehler beruht auf einem Zahlenwert, der sich aus der maximalen Spannungsabweichung einer Phase geteilt durch die Summe aller Spannungsabweichungen ergibt: Ist das Ergebnis kleiner als 0,5 ist der Fehler symmetrisch ansonsten wird er als unsymmetrisch angesehen.

Beschreibung der Schnittstellen des statischen Simulationsmodells (Abbildung 5)

Das statische Modell wird einphasig mit der Netzspannung verbunden (Eingang *Unetz*, Dimension: V).

Zusätzlich wird der Verlauf der Netzfrequenz mit dem Eingang Fnetz verbunden (Dimension: Hz).

An den Ausgängen *P_Out* und *Q_Out* können die eingespeiste Wirk- und Blindleistung abgegriffen werden (Dimension: VA).

Die Primärenergie über den verfügbaren Photostrom *lph* abgebildet (Dimension: A). Im Modell werden eine Modul-PV-Kennlinie, sowie der MPPT und Wirkungsgradverluste abgebildet.

Seite 34 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Beschreibung des Erzeugungseinheitenmodells

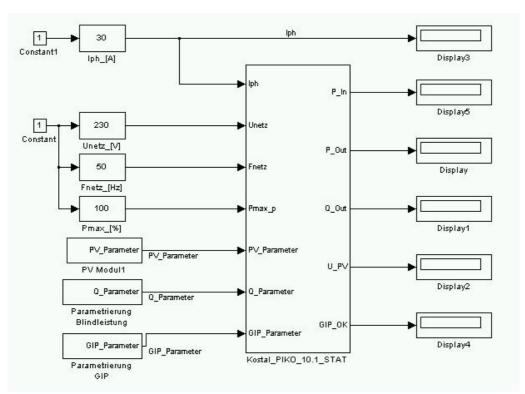


Abbildung 5 - Darstellung der Modellschnittstelle des statischen Modells

Beschreibung der typischen einstellbaren Parameter des statischen Simulationsmodells						
Parameter	Parameterbeschreibung	Dimension	Voreinstellung			
Pmax_p	Vorgabe des Wirkleistungssollwertes	%P _n	100			
Block PV Modul1						
U0	Leerlaufspannung des PV-Moduls bei maximaler Einstrahlung	V	500			
10	Leelaufstrom des PV-Moduls bei maximaler Einstrahlung	А	30			
KU	Spannungsfaktor des PV-Moduls	1	12			
Block Parametrie	rung Blindleistung					
Q Mode	 Auswahl des Blindleistungsmodus': 1. Starre Q-Vorgabe 2. Starre cosφ-Vorgabe 3. Cosφ(P)-Funktion 4. Q(U)-Funktion (Diese Funktion ist deaktiviert, da sie nicht in der Erzeugungseinheit selbst integriert ist.) 	1	-			
Q const	Vorgabe des starren Blindleistungssollwertes	%P _n	-			
cosPhi const	Vorgabe des starren Verschiebungsfaktor- sollwertes	1	-			

Seite 35 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Beschreibung de	es Erzeugungseinheitenmodells		
	Vorgabe des Blindleistungstyps:		
kap/ind_const	• -1: kapazitiv	1	-
	• 1: induktiv		
P1, P2	Vorgabe der zwei Wirkleistungsstützpunkte zur cosφ(P)-Definition	%P _n	20, 80
cosPhi1, cosPhi2	Vorgabe der zwei Verschiebungsfaktorstützpunkte zur cosφ(P)-Definition	1	0,8
kap/ind1, kap/ind2	Vorgabe des Blindleistungstyps der beiden Verschiebungsfaktorstützpunkte: • -1: kapazitiv • 1: induktiv	1	-1, 1
cosφ(P)-Funktion	Zwischen den beiden Verschiebungsfaktorstützpunk interpoliert. Zwischen den Endpunkten des Wirkleist wird der Verschiebungsfaktor des Stützpunktes eing	ungsbereichs und ei	
TQ	Vorgabe der Einschwingzeit bei einem Blindleistungsübergang	S	1
Block Parametrier	rung GIP		
U1min	Vorgabe der Unterspannungsschwelle (1. Stufe)	V	184
T1	Vorgabe der Unterspannungsschutzeinstellzeit (1. Stufe)	s	2.5
U2min	Vorgabe der Unterspannungsschwelle (2. Stufe)	V	70
T2	Vorgabe der Unterspannungsschutzeinstellzeit (2. Stufe)	S	1.3
U3max	Vorgabe der Überspannungsschwelle (1. Stufe)	V	264
Т3	Vorgabe der Überspannungsschutzeinstellzeit (1. Stufe)	S	2.5
U4max	Vorgabe der Überspannungsschwelle (2. Stufe)	V	300
Т4	Vorgabe der Überspannungsschutzeinstellzeit (2. Stufe)	s	0.1
Fmax	Vorgabe der Überfrequenzschwelle	Hz	51.5
Tfmax	Vorgabe der Überfrequenzschutzeinstellzeit	s	0.1
Fmin	Vorgabe der Unterfrequenzschwelle	Hz	51.5
Tfmin	Vorgabe der Unterfrequenzschutzeinstellzeit	s	0.1
GIP_Delay	Vorgabe der Synchronisationszeit bis zur Zuschaltung ans Netz	s	30

Beschreibung der Schnittstellen des dynamischen Simulationsmodells (Abbildung 6)

Das dynamische Modell wird dreiphasig mit der Netzspannung verbunden (Eingänge $U_L1|2|3$, Dimension: V). An den Ausgängen $I_L1|2|3$ können die Phasenströme abgegriffen werden (Dimension: A).

Die Primärenergiebereitstellung ist im Simulationsmodell als statische Quelle integriert. Teillastbetrieb wird hierbei vor Simulationsbeginn mittels Sollwerten für Wirk- (Eingang *P0*) und Blindleistung (Eingang *Q0*) festgelegt.

Seite 36 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Beschreibung des Erzeugungseinheitenmodells

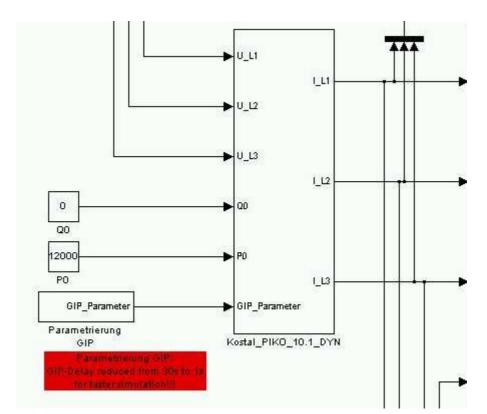


Abbildung 6 – Darstellung der Modellschnittstelle des dynamischen Modells

Beschreibung der typischen einstellbaren Parameter des dynamischen Simulationsmodells						
Parameter	Parameterbeschreibung					
Q0	Vorgabe des Blindleistungsollwertes					
P0	Vorgabe des Wirkleistungssollwertes					
GIP_Parameter Siehe ,Parametrierung GIP' des statischen Modells						

Einsatzbereich des Simulationsmodells

Typische einzustellende Simulationsschrittweite: 0,1 ms

Typischer zu nutzender Solver in der Simulationsumgebung: ode45 (Dormand-Prince), variable-step

Seite 37 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

	schreibung des Erzeugungseinheitenmodells									
Zusamme	sammenfassung der Validierungsergebnisse nach TR4 Anhang A2 (symmetrische Einbrüche) PIKO 10.1									
	Nennleistung									
	Wirkleistung, Mitsystem									
Mittler	e Abweich	ung über di		Dauer		maximale /	Abweichung	im stationär		
	Α	В	С	gewichtet			Α	В	С	
0%	0,457	><	0,767			0%	0,006	><	0,093	
25%	0,050	1,375	0,376	0,943		25%	0,004	0,032	0,055	
50%	0,309	1,126	0,894	0,975		50%	0,006	0,043	0,040	
75%	0,390	0,788	0,288	0,598		75%	0,006	0,033	0,042	
			В	lindleistun	g, Mitsy	/stem				
Mittler	e Abweich	ung über di	e gesamte	Dauer		maximale /	Abweichung	im stationär	en Betrieb	
	Α	В	С	gewichtet	В		Α	В	С	
0%	2,412	><	1,650			0%	0,026	><	0,051	
25%	1,856	0,064	2,738	1,045		25%	0,020	0,002	0,067	
50%	2,499	0,822	2,376	1,456		50%	0,027	0,019	0,049	
75%	2,397	0,815	2,611	1,512		75%	0,026	0,016	0,062	
				Blindstrom	, Mitsys	stem				
Mittler	e Abweich	ung über di	e gesamte	Dauer		maximale /	Abweichung	im stationär	en Betrieb	
	Α	В	С	gewichtet	В		А	В	С	
0%	2,385		1,833			0%	0,026		0,051	
25%	1,875	1,043	2,878	1,677		25%	0,020	0,017	0,067	
50%	2,469	2,452	2,360	2,426		50%	0,027	0,048	0,048	
75%	2,370	0,591	2,605	1,373		75%	0,025	0,016	0,062	

Seite 38 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

	chreibung des Erzeugungseinheitenmodells ammenfassung der Validierungsergebnisse nach TR4 Anhang A2 (symmetrische Einbrüche)									
	PIKO 10.1									
				Teille	istung					
	Wirkleistung, Mitsystem									
Mittlere Abweichung über die gesamte Dauer maximale Abweichung im stationären Betrie										
	Α	В	С	gewichtet			Α	В	С	
0%	0,439	\nearrow	0,508			0%	0,008		0,01	
25%	1,057	0,336	1,048	0,622		25%	0,014	0,017	0,04	
50%	0,431	0,952	0,859	0,872		50%	0,009	0,017	0,01	
75%	0,130	1,966	0,150	1,238		75%	0,002	0,028	0,00	
Mittlere	e Abweich	ung über di		lindleistun Dauer	g, Mitsy		Abweichung	im stationär	en Betr	
	Α	В	С	gewichtet			Α	В	С	
0%	0,865	\times	1,426			0%	0,010	>	0,02	
25%	1,903	0,551	2,332	1,221		25%	0,020	0,002	0,02	
50%	0,828	1,461	1,147	1,303		50%	0,009	0,018	0,01	
75%	0,897	2,261	1,089	1,773		75%	0,010	0,029	0,01	
				Dia Jataan	N4:4	4				
Mittler	a Δhwaich	ung über di		Blindstrom	, wiitsys		Δηνωίσημα	im stationär	on Rotr	
MILLIER	Abweich	B	e gesamle C	gewichtet		iliaxiiliale i	Abweichung	В	C	
0%	0,864		1,469	gewichtet		0%	0,010	5	0,02	
25%	1,904	2,298	2,388	2,286		25%	0,010	0,016	0,02	
50%	0,827	3,708	1,176	2,660		50%	0,020	0,016	0,02	
75%	0,895	3,222	1,102	2,353		75%	0,010	0,041	0,01	
. 5 /0	0,000	0,222	1,102	2,500		1070	0,010	0,071	0,01	

Seite 39 von 39 Anhang zum EZE-Zertifikat Nr. 12-072_2

Beschreibung des Erzeugungseinheitenmodells								
Dateiformat								
.mdl	Simulink-Modelle	Simulink-Modelldatei						
.zip	zip-Archivdatei	zip-Archivdatei						
Identifikation des Einheiten	modells							
Name:	Kost_12_072_TF	R4_Pikoxxx_V1.zip	(Archivdatei)					
MD5 – Prüfsumme:	e149c35507433a	a1eec2b5dfd7787d3l	08					
Archivinhalt:								
Name:	KOSTAL_Solar_	Electric_lib.mdl						
	(zugriffsbeschrär	nkte Modelldatei)						
Name:	Kost 12 072 TF	 R4_Pikoxxx_V1_opei	n.zip (Archivdatei)					
MD5 – Prüfsumme:		d917388ffbd9b6714	. ,					
Archivinhalt:								
Name:	KOSTAL_Solar_	Electric_lib.mdl						
	(offene Modellda	tei)						
Beschreibung der Simulation	onsumgebung zur Generie	rung des Einheitenr	nodells					
Name:	MATLAB/Simulir	nk						
Software Version:	MATLAB	Version 7.11	(R2010b)					
	Simulink	Simulink Version 7.6 (R2010b)						
Beschreibung der Simulation	onsumgebung zur Validieru	ung des Einheitenm	odells					
Name:	MATLAB/Simulir	nk						
Software Version:	MATLAB	Version 7.13	(R2011b)					
	Simulink	Version 7.8	(R2011b)					
	PLECS	Version 3.2.3						

Referenzen

Das der Netzanschlussregel konforme Verhalten der Erzeugungseinheit ist durch die Ergebnisse im Prüfbericht 07THS186_TR3 hinterlegt.

Das der Netzanschlussregel konforme Verhalten des Erzeugungseinheitenmodells wird über den Validierungsbericht 07THS186_TR4 nachgewiesen.

Die Zusammenfassung der Netzanschlussregel konformen Zertifizierung der Erzeugungseinheiten PIKO 10.1, PIKO 8.3 und PIKO 7.0 ist im Zertifizierungsbericht 07THS186_TR8 dargestellt.