

Engineering Recommendation - G83/2

APPENDIX 4: TYPE VERIFICATION TEST REPORT

Type Approval and manufacturer declaration of compliance with the requirements of Engineering Recommendation G83/2 SSEG Type reference number PIKO 1.5 MP PIKO 2.0 MP PIKO 2,5 MP PIKO 3.0 MP PIKO 3.6 MP PIKO 4.2 MP SSEG Type PV inverter Manufacturer KOSTAL Solar Electric GmbH Hanferstraße 6 Address: 79108 Freiburg i. Br., Deutschland +49 761 47744 - 100 +49 761 47744 - 111 Fax Tel Web site service-solar@kostal.com www.kostal-solar-electric.com e-mail 1.5 / 2.0 / 2.5 / 3.0 / 3.6 / 4.2 kW single phase Maximum rated capacity SSEG manufacturer declaration: I certify on behalf of the company named above as a manufacturer of Small Scale Embedded Generators, that all products manufactured by the company with the above SSEG Type reference number will be manufactured and tested to ensure that they perform as stated in this Type Verification Test Report, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of G83/2.

Signed	01.01.2016	On behalf of	no Puta
			Dr. Armin von Preetzmann
			(Vicepresident R&D)

Power Q	uality. Harmo	onics				
SSE	EG rating per ph	ase (rpp)		kW	NV = MV * 3.68 / rpp	
Harmonic	At 45-55% c	of rated output	100% of r	ated output		
	Measured Value (MV) in Amps	Normalized Value (NV) in Amps	Measured Value (MV) in Amps	Normalized Value (NV) in Amps	Limits in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.0062	0.0125	0.0109	0.0218	1.080	
3	0.2644	0.5288	0.0437	0.0874	2.300	
4	0.0023	0.0047	0.0062	0.0125	0.430	
5	0.2215	0.4430	0.0608	0.1217	1.140	
6	0.0016	0.0031	0.0047	0.0094	0.300	
7	0.0889	0.1778	0.0078	0.0156	0.770	
8	0.0008	0.0016	0.0031	0.0062	0.230	
9	0.0889	0.1778	0.0351	0.0702	0.400	
10	0.0008	0.0016	0.0023	0.0047	0.184	
11	0.0273	0.0546	0.0086	0.0172	0.330	
12	0.0008	0.0016	0.0016	0.0031	0.153	
13	0.0374	0.0749	0.0265	0.0530	0.210	
14	0.0008	0.0016	0.0008	0.0016	0.131	
15	0.0140	0.0281	0.0094	0.0187	0.150	
16	0.0008	0.0016	0.0008	0.0016	0.115	
17	0.0218	0.0437	0.0187	0.0374	0.132	
18	0.0008	0.0016	0.0016	0.0031	0.102	
19	0.0055	0.0109	0.0133	0.0265	0.118	
20	0.0008	0.0016	0.0016	0.0031	0.092	
21	0.0047	0.0094	0.0148	0.0296	0.107	0.160
22	0.0008	0.0016	0.0016	0.0031	0.084	
23	0.0094	0.0187	0.0125	0.0250	0.098	0.147
24	0.0008	0.0016	0.0016	0.0031	0.077	
25	0.0062	0.0125	0.0109	0.0218	0.090	0.135
26	0.0008	0.0016	0.0016	0.0031	0.071	
27	0.0047	0.0094	0.0140	0.0281	0.083	0.124
28	0.0008	0.0016	0.0008	0.0016	0.066	
29	0.0062	0.0125	0.0109	0.0218	0.078	0.17
30	0.0008	0.0016	0.0008	0.0016	0.061	
31	0.0070	0.0140	0.0125	0.0250	0.073	0.109

SOLAR ELECTRIC

32	0.0008	0.0016	0.0008	0.0016	0.058		
33	0.0016	0.0031	0.0109	0.0218	0.068	0.102	
34	0.0008	0.0016	0.0008	0.0016	0.054		
35	0.0094	0.0187	0.0133	0.0265	0.064	0.096	
36	0.0008	0.0016	0.0008	0.0016	0.051		
37	0.0156	0.0312	0.0125	0.0250	0.061	0.091	
38	0.0008	0.0016	0.0008	0.0016	0.048		
39	0.0117	0.0234	0.0133	0.0265	0.058	0.087	
40	0.0008	0.0016	0.0008	0.0016	0.046		
Measured by Bureau Veritas CPS Germany GmbH Businesspark A96							

86842 Tuerkheim

Germany

Power Quality. Voltage Fluctuations and Flicker									
		Starting			Sto	opping		Running	
	d _{max}	dc	d(t)	d _{max}		dc	d(t)	Pst	Ptt 2 hours
Measured Values	3.7	2.9	0.02	3.7		2.9	0.02	0.385	0.385
Normalised to standard impedance and 3.68kW for multiple units									
Limits set under BS EN 61000-3-2	4%	3.3%	3.3% ^{500ms}	4%	3	3.3%	3.3% 500ms	1.0	0.65
	1					r			
Test start date	12	12 th of Feb.2014 Test end 12 th of Feb.2014 date						4	
Test location	Business 86842 Tu	Bureau Veritas CPS Germany GmbH Businesspark A96 86842 Tuerkheim Germany							

Power Quality. DC injection								
Test power level	10%	55%	100%					
Recorded value	17mA	10mA	18mA					
as % of rated AC current	0.21%	0.13%	0.23%					
Limit	0.25%	0.25%	0.25%					
Measured with	Measured with							

Power Quality. Power factor									
	216.2V	230V	253V	Measured at three voltage levels and at full output. Voltage to be maintained within					
Measured value	<0.99	<0.99	<0.99	$\pm 1.5\%$ of the stated level during the test.					
Limit	>0.95	>0.95	>0.95						

Protection.	Frequency	tests				
Function	Settings		Trip test		"No trip tests	n
	Frequency	Time delay	Frequency	Time delay	Frequency / time	Confirm no trip
U/F stage 1	47.5Hz	20s	47,46 Hz	20,3s	47.7Hz 25s	confirm
U/F stage 2	47hz	0.5s	46,94 Hz	0,8s	47.2Hz 19.98s	confirm
					46.8Hz 0.48s	confirm
O/F stage 1	51.5Hz	90s	51,56 Hz	90,3s	51.3Hz 95s	confirm
O/F stage 2	52Hz	0.5s	52,08 Hz	0,78s	51.8Hz 89.98s	confirm
					52.2Hz 0.48s	confirm

Protection. Voltage tests									
Function	Settings		Trip test		"No trip test	ts"			
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip			
U/V stage 1	200.1V	2.5s	199,8V	2,7s	204.1V 3.5s	confirm			
U/V stage 2	184V	0.5s	182,7V	0,7s	188 2.48s	confirm			
					180V 0.48s	confirm			
O/V stage 1	262.2V	1.0s	2647V	1,2s	258.2V 2.0s	confirm			
O/V stage 2	273.3V	0.5s	275,7V	0,7s	269.7V 0.98s	confirm			
					277.7V 0.48s	confirm			

Protection. Lo	ss of Main	s test				
To be carried out	at three powe	er levels with a	tolerance of p	lus or minus 5%	in Test Powe	r levels
Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG output
network	output	output	output	output	output	
Trip time. Limit	N/A	N/A	N/A	N/A	N/A	N/A
is 0.5 seconds						
For multi phase S	SEG s confirn	n that the devic	e shuts down	correctly after	the removal of	a single fuse as
well as operation				-		0
Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG output
network	output	output	output	output	output	
Trip time. Ph1	N/A	N/A	N/A	N/A	N/A	N/A
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG output
network	output	output	output	output	output	
Trip time. Ph2	N/A	N/A	N/A	N/A	N/A	N/A
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG output
network	output	output	output	output	output	
Trip time. Ph3	N/A	N/A	N/A	N/A	N/A	N/A
fuse removed						
Note for technolo	gies which ha	ve a substantia	l shut down ti	me this can be	added to the ().5 seconds in
establishing that t	he trip occurr	ed in less than	0.5s. Maximu	m shut down tir	ne could there	efore be up to
1.0seconds for th	ese technolog	jies.				
Indicate additiona	l shut down ti	me included in	above results			ms
Note as an alterna	ative, inverters	can be tested	to BS EN 62	116. The followi	ng sub sets of	tests should be
recorded in the fo					-	
Time Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% Q	+5% Q	+5% Q	+5% Q
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit	0.71s	0.96s	0.81s	0.97s	0.82s	0.86s
is 0.5 seconds						

Protection. Frequency change, Stability test									
	Start Change End Confirm no trip								
	Frequency								
Positive Vector Shift	49.5Hz	+9 degrees		confirm					
Negative Vector Shift	50.5Hz	-9 degrees		confirm					
Positive Frequency drift 49.5Hz +0.19Hz/s 51.5Hz confirm									
Negative Frequency drift 50.5Hz -0.19Hz/s 47.5Hz confirm									

Protection. Re-connection timer

Test should prove that the reconnection sequence starts after a minimum delay 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 1

Time delay	Measured		Check on no reconnection when the voltage or frequency					
setting	delay		is brought to outside stage 1 limits of table 1					
			At 266.2V	At 196.1V	At 47.4Hz	At 51.6Hz		
Confirm that the	ne SSEG does r	not re-connect	confirm	confirm	confirm	confirm		

Fault level contribution								
For a directly coupled SSEG	à		For an Inverter S	SEG				
Parameter	Symbol	Value	Time after fault	Volts	Amps			
Peak Short Circuit current	İP	N/A	20ms	79,15	16,65			
Initial Value of aperiodic	А	N/A	100ms	73,03	10,54			
current								
Initial symmetrical short-	lĸ	N/A	250m	72,78	9,48			
circuit current								
Decaying (aperiodic)	İDC	N/A	500m	72,77	90,40			
component of a short								
circuit current								
Reactance/Resistance	X/R	N/A	Time to trip	0,757	In seconds			
Ratio of source								

Self-monitoring solid state switching	Yes or N/A
It has been verified that in the event of the solid state switching device failing to disconnect the SSEG, the voltage on the output side of the switching device is	N/A
reduced to a value below 50 volts within 0.5 seconds.	

Additional comments

Unless otherwise noted all testing were done in the laboratories of the manufacturer and with the PIKO 3.6 MP, which is regarded either as representative or as worst case.